已知函数,其中。
(1)当a=1时,求它的单调区间;
(2)当时,讨论它的单调性;
(3)若恒成立,求的取值范围.
(1) (2)当得,单调增区间为;当得,单调减区间为;当时,单调增区间为,单调减区间为. (3)
解析试题分析:(1)当时,,对称轴方程为,
在对称轴方程内,则的单调减区间为;
单调减区间为 5分
(2),对称轴方程为,
下面分三种情况讨论:
当得,单调增区间为;
当得,单调减区间为;
当时,单调增区间为,单调减区间为. 10分
(3)当时,有恒成立,
等价于,只要,
而, 15分
考点:本题考查了函数的性质
点评:对于二次函数f(x)=ax2+bx+c=0(a≠0)在实数集R上恒成立问题可利用判别式直接求解,即 f(x)>0恒成立;f(x)<0恒成立.若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.
科目:高中数学 来源: 题型:解答题
若函数都在区间上有定义,对任意,都有成立,则称函数为区间上的“伙伴函数”
(1)若为区间上的“伙伴函数”,求的范围。
(2)判断是否为区间上的“伙伴函数”?
(3)若为区间上的“伙伴函数”,求的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,设
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值;
(3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知(,为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com