【题目】在即将进入休渔期时,某小微企业决定囤积一些冰鲜产品,销售所囤积产品的净利润f(x)万元与投入x万元之间近似满足函数关系:,若投入2万元,可得到净利润为5.2万元.
(1)试求该小微企业投入多少万元时,获得的净利润最大;
(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围,若不亏本,请说明理由.(参考数据:ln 2≈0.7,ln 15≈2.7)
【答案】(1)8;(2)
【解析】
(1)由题意可得f(2)=5.2,解得a=-4,讨论2≤x≤15时,求得导数和单调区间、极值和最值;由0<x<2时,f(x)的单调性可得f(x)的最大值;
(2)讨论0<x<2时,f(x)<0的x的范围,由f(x)在[2,15]的端点的函数值,可得f(x)>0,即可判断企业亏本的x的范围.
(1)由题意可知,当x=2时,f(2)=5.2,即有aln 2-×22+×2=5.2,解得a≈-4.则f(x)=当2≤x≤15时,f′(x)=--x+=-.当2<x<8时,f′(x)>0,f(x)单调递增;当8<x<15时,f′(x)<0,f(x)单调递减.故当2≤x≤15时,f(x)max=f(8)=-4ln 8-16+36≈11.6.当0<x<2时,f′(x)=4x-2ln 2≈4x-1.4,令f′(x)=0,得x=0.35,当x∈(0,0.35)时,f′(x)<0,当x∈(0.35,2)时,f′(x)>0.所以易知f(x)<2×4-(2ln 2)×2≈5.2.故该小微企业投入8万元时,获得的净利润最大.
(2)当0<x<2时,2x2-(2ln 2)x<0,解得0<x<ln 2,即当0<x<ln 2时,该企业亏本;当2≤x≤15时,f(2)≈5.2,f(15)=-4ln 15-×152+×15≈0.45>0,则f(x)min=f(15)≈0.45>0.综上可得,当0<x<ln 2,即0<x<0.7时,该企业亏本.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧面底面,,,分別为棱的中点
(1)求三棱柱的体积;
(2)在直线上是否存在一点,使得平面?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知扇形的圆心角是α,半径为R,弧长为l.
(1)若α=75°,R=12 cm,求扇形的弧长l和面积;
(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018·长沙二模)在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则.推广到空间可以得到类似结论:已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业2017年招聘员工,其中A、B、C、D、E五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘E岗位的6人中随机选择1名男性和1名女性,求这2人均被录用的概率;
(Ⅲ)表中A、B、C、D、E各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大型活动即将举行,为了做好接待工作,组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成以下列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男志愿者 | |||
女志愿者 | |||
总计 |
(2)根据列联表判断能否有℅的把握认为性别与喜爱运动有关?
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果双曲线的离心率e=,则称此双曲线为黄金双曲线.有以下几个命题:①双曲线是黄金双曲线;②双曲线是黄金双曲线;③在双曲线 (a>0,b>0)中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1B1A2=90°,则该双曲线是黄金双曲线;④在双曲线 (a>0,b>0)中,过右焦点F2作实轴的垂线交双曲线于M,N两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.其中正确命题的序号为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com