【题目】【2017河北唐山三模】已知函数, .
(1)讨论函数的单调性;
(2)若函数在区间有唯一零点,证明: .
【答案】(Ⅰ)见解析;(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)求导得, 分, , ,三种情况讨论可得单调区间.
(Ⅱ)由(1)及可知:仅当极大值等于零,即且
所以,且,消去得,构造函数,证明单调且零点存在且唯一即可.
试题解析:(Ⅰ) , ,
令, ,
若,即,则,
当时, , 单调递增,
若,即,则,仅当时,等号成立,
当时, , 单调递增.
若,即,则有两个零点, ,
由, 得,
当时, , , 单调递增;
当时, , , 单调递减;
当时, , , 单调递增.
综上所述,
当时, 在上单调递增;
当时, 在和上单调递增,
在上单调递减.
(Ⅱ)由(1)及可知:仅当极大值等于零,即时,符合要求.
此时, 就是函数在区间的唯一零点.
所以,从而有,
又因为,所以,
令,则,
设,则,
再由(1)知: , , 单调递减,
又因为, ,
所以,即
科目:高中数学 来源: 题型:
【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.
(1)求点的轨迹方程;
(2)设直线与直线的夹角为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017重庆二诊】已知椭圆: 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点, .
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,连接(为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为,丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.
(Ⅰ)求的值;
(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)
在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.
(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣2ax+1+lnx
(1)当a=0时,若函数f(x)在其图象上任意一点A处的切线斜率为k,求k的最小值,并求此时的切线方程;
(2)若函数f(x)的极大值点为x1 , 证明:x1lnx1﹣ax12>﹣1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com