精英家教网 > 高中数学 > 题目详情
在如图1所示的等腰梯形ABCD中,AB∥CD,且AB=AD=BC=
12
CD=a
,E为CD中点.若沿AE将三角形DAE折起,使平面DAE⊥平面ABCE,连接DB,DC,得到如图2所示的几何体D-ABCE,在图2中解答以下问题:
(Ⅰ)设F为AB中点,求证:DF⊥AC;
(Ⅱ)求二面角A-BD-C的正弦值.
分析:(Ⅰ)取AE中点H,连接HF,连接EB,利用面面垂直,证明线面垂直,即DH⊥平面ABCE,进一步证明AC⊥平面DHF,从而可得线线垂直;
(Ⅱ)建立空间直角坐标系,求出面DCB的法向量
m
=(0,1,1)
,面DAB的法向量
n
=(1,
3
3
3
3
)
,利用向量的夹角公式,可得二面角A-BD-C的正弦值.
解答:(Ⅰ)证明:取AE中点H,连接HF,连接EB
因为△DAE为等边三角形,所以DH⊥AE
因为平面DAE⊥平面ABCE,平面DAE∩平面ABCE=AE
所以DH⊥平面ABCE,
因为AC?平面ABCE
所以AC⊥DH…(2分)
因为ABCE为平行四边形,CE=BC=a
所以ABCE为菱形,所以AC⊥BE
因为H、F分别为AE、AB中点,所以HF∥BE
所以AC⊥HF…(4分)
因为HF?平面DHF,DH?平面DHF,且HF∩DH=H
所以AC⊥平面DHF,又DF?平面DHF
所以DF⊥AC…(6分)
(Ⅱ)解:连接BH,EB
由题意得三角形ABE为等边三角形,所以BH⊥AE
由(Ⅰ)知DH⊥底面ABCE以H为原点,分别以HA,HB,HD所在直线为x,y,z轴
建立空间直角坐标系,如图所示
A(
a
2
,0,0),B(0,
3
2
a,0),D(0,0,
3
2
a),C(-a,
3
2
a,0)

所以
BD
=(0,-
3
2
a,
3
2
a)
BC
=(-a,0,0)

设面DCB的法向量为
m
=(x,y,z)
,则
-ax=0
-
3
2
ay+
3
2
az=0

不妨设
m
=(0,1,1)
…(8分)
设面DAB的法向量
n
=(x′,y′,z′)
,又
DA
=(
a
2
,0,-
3
2
a)

x′-
3
z′=0
y′-z′=0
,取
n
=(1,
3
3
3
3
)
…(10分)
所以cos<
m
n
>=
m
n
|
m
|•|
n
|
=
10
5

所以二面角A-BD-C的正弦值为
15
5
…(12分)
点评:本题看下线面垂直,考查线线垂直,考查面面角,考查利用空间向量解决空间角问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图1所示的等腰梯形ABCD中,AB∥CD,AB=AD=BC=
12
CD=a
,E为CD中点.若沿AE将三角形DAE折起,并连接DB,DC,得到如图2所示的几何体D-ABCE,在图2中解答以下问题:

(Ⅰ)设G为AD中点,求证:DC∥平面GBE;
(Ⅱ)若平面DAE⊥平面ABCE,且F为AB中点,求证:DF⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图1所示的等腰梯形ABCD中,AB∥CD,数学公式,E为CD中点.若沿AE将三角形DAE折起,并连接DB,DC,得到如图2所示的几何体D-ABCE,在图2中解答以下问题:

(Ⅰ)设G为AD中点,求证:DC∥平面GBE;
(Ⅱ)若平面DAE⊥平面ABCE,且F为AB中点,求证:DF⊥AC.

查看答案和解析>>

科目:高中数学 来源:2012年山东省高考数学压轴卷(理科)(解析版) 题型:解答题

在如图1所示的等腰梯形ABCD中,AB∥CD,且,E为CD中点.若沿AE将三角形DAE折起,使平面DAE⊥平面ABCE,连接DB,DC,得到如图2所示的几何体D-ABCE,在图2中解答以下问题:
(Ⅰ)设F为AB中点,求证:DF⊥AC;
(Ⅱ)求二面角A-BD-C的正弦值.

查看答案和解析>>

科目:高中数学 来源:2012年山东省年高考数学压轴卷(文科)(解析版) 题型:解答题

在如图1所示的等腰梯形ABCD中,AB∥CD,,E为CD中点.若沿AE将三角形DAE折起,并连接DB,DC,得到如图2所示的几何体D-ABCE,在图2中解答以下问题:

(Ⅰ)设G为AD中点,求证:DC∥平面GBE;
(Ⅱ)若平面DAE⊥平面ABCE,且F为AB中点,求证:DF⊥AC.

查看答案和解析>>

同步练习册答案