精英家教网 > 高中数学 > 题目详情
如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为(  )
A、6+4
2
+2
3
B、8+4
2
C、6+6
2
D、6+2
2
+4
3
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:直观图如图所示四棱锥P-ABCD,利用表面积计算公式即可得出.
解答: 解:直观图如图所示四棱锥P-ABCD.
S△PAB=S△PAD=S△PDC=
1
2
×2×2=2

S△PBC=
1
2
×2
2
×2
2
×sin600=2
3

S四边形ABCD=2
2
×2=4
2

故此棱锥的表面积为6+4
2
+2
3

故选:A.
点评:本题考查了四棱锥的三视图及其表面积计算公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过D(2,0),E(1,
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设斜率为k且不过原点O的直线l与椭圆C交于两点M、N,若直线OM、ON的斜率分别为k1,k2,且满足k2=k1•k2,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,与函数f(x)=ln(x+1)有相同定义域的是(  )
A、y=
x+1
B、y=
1
x+1
C、y=|x+1|
D、y=
1
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
3
是|AF|与|FB|的等比中项.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A,B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q.证明:Q,P,B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x
+xlnx,则曲线y=f(x)在x=1处的切线方程为(  )
A、x-y-3=0
B、x-y+3=0
C、x+y-3=0
D、x+y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a2=7,a3=8,令bn=
1
anan+1
,数列{bn}的前n项和为Tn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Tn
(Ⅲ)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,近日我渔船编队在岛A周围海域作业,在岛A的南偏西20°方向有一个海面观测站B,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与B相距31海里的C处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛A直线航行以保护我渔船编队,30分钟后到达D处,此时观测站测得B,D间的距离为21海里.
(Ⅰ)求sin∠BDC的值;
(Ⅱ)试问海警船再向前航行多少分钟方可到岛A?

查看答案和解析>>

科目:高中数学 来源: 题型:

在2011年9月28日成功发射了“天宫一号”,假设运载火箭在点火第一秒钟通过的路程为2km,以后每秒通过的路程都增加2km,达到离地面240km的高度时,火箭与飞船分离,这一过程需要的时间大约是
 
秒钟.

查看答案和解析>>

科目:高中数学 来源: 题型:

若过点P(-2
3
,-2)的直线与圆x2+y2=4有公共点,则该直线的倾斜角的取值范围是(  )
A、(0,
π
6
B、[0,
π
3
]
C、[0,
π
6
]
D、(0,
π
3

查看答案和解析>>

同步练习册答案