精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.

问:(1)这个几何体是什么?

(2)这个几何体由几个面构成?每个面的三角形是什么三角形?

【答案】(1)这个几何体是三棱锥.

(2)这个几何体由四个面构成,分别为面DEF、面DFP、面DEP、面EFP.△DEF为等腰三角形,△DFP、△EFP、△DEP均为直角三角形.

【解析】

(1)根据题意,分析可得这个几何体是三棱锥;

(2)由三棱锥的几何结构分析可得答案.

1)根据题意,得到的几何体为三棱锥;

2)这个几何体由四个面构成,即面DEF、面DFP、面DEP、面EFP

又由DEDF,∠DPE=∠EPF=∠DPF=90°,

所以△DEF为等腰三角形,△DFP、△EFP、△DEP为直角三角形;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆过点并且与圆相外切,动圆圆心的轨迹为.

Ⅰ)求曲线的轨迹方程;

Ⅱ)过点的直线与轨迹交于两点,设直线,设点,直线,求证:直线经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)当时,讨论的单调性;

3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程分别为.

(1)将直线的参数方程化为极坐标方程,将的极坐标方程化为参数方程;

(2)当时,直线交于两点,与交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的长轴为直径的圆与直线相切.

(1)求椭圆的标准方程;

(2)已知过点的动直线与椭圆的两个交点为,求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如下图)四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在黄实区域的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )

A. (,+∞)B. (]C. (0,)D. (]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式,其中.

1)当时,求不等式的解集A

2)若,试求不等式的解集B

3)设原不等式的解集为C,记(其中为整数集),试探究集合M能否为有限集?若能,求出使得集合M中元素个数最少的实数的所有取值,并用列举法表示集合M;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图所示的某种容器的体积为,它是由圆锥和圆柱两部分连接而成,圆柱与圆锥的底面半径都为.圆锥的高为,母线与底面所成的角为;圆柱的高为已知圆柱底面的造价为,圆柱侧面造价为,圆锥侧面造价为

(1)将圆柱的高表示为底面半径的函数,并求出定义域;

(2)当容器造价最低时,圆柱的底面半径为多少?

查看答案和解析>>

同步练习册答案