精英家教网 > 高中数学 > 题目详情

若函数数学公式在区间(-∞,4)上是增函数,则有


  1. A.
    a>b≥4
  2. B.
    a≥4>b
  3. C.
    4≤a<b
  4. D.
    a≤4<b
C
分析:求导函数,利用导数大于0,求得a<b,确定函数的单调增区间,根据函数在区间(-∞,4)上是增函数,即可求得结论.
解答:求导函数可得=
令f′(x)>0,可得b-a>0,∴a<b
∵函数的单调区间为(-∞,a),(a,+∞),函数在区间(-∞,4)上是增函数
∴a≥4
∴4≤a<b
故选C.
点评:本题考查函数的单调性,考查导数知识的运用,正确理解函数在区间(-∞,4)上是增函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数在区间(t,t+
1
2
)(其中t>0)上存在极值,求实数t的取值范围;
(2)如果当x≥1时,不等式f(x)
a
x+1
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数在区间(t,t+
1
2
)
(其中t>0)上存在极值,求实数t的取值范围;
(2)如果当x≥1时,不等式f(x)≥
a
x+1
恒成立,求实数a的取值范围,并且判断代数式[(n+1)!]2与(n+1)•en-2(n∈N*)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3:
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数在区间(a,a+
1
2
)
(其中a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(Ⅲ)求证.
n
k=1
[lnk+ln(k+1)]>
n2-n+1
n+1
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
+
1
x

(Ⅰ)若函数在区间(m,m+
1
3
)(其中m>0)上存在极值,求实数m的取值范围;
(Ⅱ)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(Ⅲ)求证:[(n+1)!]2>(n+1)•en-2(n∈N*).

查看答案和解析>>

同步练习册答案