精英家教网 > 高中数学 > 题目详情
6.已知集合A中含有两个元素1,-2,集合B={x|x2+ax+b=0},且A=B,则a=1.

分析 由条件便知1,-2为方程x2+ax+b=0的两实根,根据韦达定理即可求出a,b.

解答 解:根据题意知,1,-2为方程x2+ax+b=0的解;
∴由韦达定理$\left\{\begin{array}{l}{1-2=-a}\\{1×(-2)=b}\end{array}\right.$;
∴a=1,b=-2.
故答案为:1.

点评 本题考查了集合相等的概念,元素与集合的关系,以及韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程ρ=4cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}\right.(t$为参数,0≤α<π)射线$θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于极点O为的三点A、B、C
(1)若|OB|+|OC|=λ|OA|,求λ的值;
(2)当$φ=\frac{π}{12}$时,B、C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.地球的北纬45°圈上有A,B两点,它们分别在东经70°和东经160°的经线上,则A,B两点的球面距离与其在此北纬45°圈上劣弧长的比值为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AB⊥AC,AB=AC=1,AA1=2,E、F、G分别是棱BB1、B1C1、CC1的中点.
(1)求证:AG∥平面A1EF;
(2)求直线AG与平面BCC1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-4x+2a+3,a∈R.
(1)若函数f(x)在[-1,1]上有零点,求a的取值范围;
(2)设函数g(x)=mx-2m,m∈R,当a=0时,?x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-2x-3=0},集合B={-1,0,1,2,3},且集合M满足A⊆M⊆B,则M的个数为(  )
A.32B.16C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.$\underset{lim}{x→∞}$(1-$\frac{1}{{x}^{2}}$)${\;}^{3{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在R上的奇函数,x≥0时,f(x)=-x2+2x.
(1)求f(x)在R上的表达式;
(2)令g(x)=f(x),问是否存在大于零的实数a、b,使得当x∈[a,b]时,函数g(x)值域为$[{\frac{1}{b},\frac{1}{a}}]$,若存在求出a、b的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆O:x2+y2=4,直线l:mx+y-m-$\sqrt{3}$=0.
(1)直线l恒过定点P,求点P的坐标及原点O到直线l的距离的最大值.
(2)当m=$\sqrt{3}$时,判断直线l与圆O是否相交?若相交,求相交弦的长度.

查看答案和解析>>

同步练习册答案