精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,其左右顶点分别为,,上下顶点分别为,.圆是以线段为直径的圆.

(1)求圆的方程;

(2)若点,是椭圆上关于轴对称的两个不同的点,直线,分别交轴于点,求证:为定值;

(3)若点是椭圆Γ上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标,若不存在,说明理由.

【答案】1=;(2;(3)不存在点,使得,见解析

【解析】

(1)由题意得:,,即可求出圆的方程;

(2)由题意可知:,,设,则,,求出直线的方程是,从而求出点坐标,同理求出点坐标,再利用点在椭圆上,坐标满足椭圆方程,即可化简出为定值;

(3)显然直线的斜率存在,设其方程为:=,代入椭圆方程得到=,再利用根与系数的关系和弦长公式求出的长,再利用构造直角三角形用勾股定理算出的长,假设存在点,使得,则=,所以,化简得:=,此方程在实数范围内无解,故原假设错误,即不存在点,使得.

(1)由题意得:,,

∴ 圆的圆心为原点,半径为,

∴ 圆的方程是=;

2)由题意可知:,,设,则,,

∴ 直线的方程是:,∴点,同理点,

又∵ 点在椭圆上,∴

,

(3)显然直线的斜率存在,设其方程为:=,

联立方程,化简得:=,

,则,

所以,

因为圆心到直线的距离,

所以=,

假设存在点,使得,则=,

所以,化简得:=,此方程在实数范围内无解,

故原假设错误,即不存在点,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边边上.,矩形的面积为.

1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;

2)试问如何截取(即取何值时),可使得到的矩形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

给定椭圆,称圆心在原点,半径为的圆是椭圆准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.

I)求椭圆的方程和其准圆方程;

(II )P是椭圆C准圆上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其准圆于点MN.

1)当P准圆轴正半轴的交点时,求的方程;

2)求证:|MN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线上的两点,线段的中点为,直线不经过坐标原点

1)若直线和直线的斜率都存在且分别为,求证:

2)若双曲线的焦点分别为,点的坐标为,直线的斜率为,求由四点所围成四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,真命题是(  )

A.和两条异面直线都相交的两条直线是异面直线

B.和两条异面直线都相交于不同点的两条直线是异面直线

C.和两条异面直线都垂直的直线是异面直线的公垂线

D.是异面直线,是异面直线,则是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥DABC,O为线段AC上一点,平面ADC⊥平面ABC,且△ADO,ABO为等腰直角三角形,斜边AO=4.

()求证:ACBD;

()将△BDODO旋转一周,求所得旋转体的体积.

查看答案和解析>>

同步练习册答案