【题目】已知椭圆,其左右顶点分别为,,上下顶点分别为,.圆是以线段为直径的圆.
(1)求圆的方程;
(2)若点,是椭圆上关于轴对称的两个不同的点,直线,分别交轴于点,求证:为定值;
(3)若点是椭圆Γ上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标,若不存在,说明理由.
【答案】(1)=;(2);(3)不存在点,使得,见解析
【解析】
(1)由题意得:,,即可求出圆的方程;
(2)由题意可知:,,设,则,,求出直线的方程是,从而求出点坐标,同理求出点坐标,再利用点在椭圆上,坐标满足椭圆方程,即可化简出为定值;
(3)显然直线的斜率存在,设其方程为:=,代入椭圆方程得到=,再利用根与系数的关系和弦长公式求出的长,再利用构造直角三角形用勾股定理算出的长,假设存在点,使得,则=,所以,化简得:=,此方程在实数范围内无解,故原假设错误,即不存在点,使得.
(1)由题意得:,,
∴ 圆的圆心为原点,半径为,
∴ 圆的方程是=;
(2)由题意可知:,,设,则,,
∴ 直线的方程是:,∴点,同理点,
又∵ 点在椭圆上,∴
∴ ,
(3)显然直线的斜率存在,设其方程为:=,
联立方程,化简得:=,
设,则,
所以,
因为圆心到直线的距离,
所以=,
假设存在点,使得,则=,
所以,化简得:=,此方程在实数范围内无解,
故原假设错误,即不存在点,使得.
科目:高中数学 来源: 题型:
【题目】有一块铁皮零件,其形状是由边长为的正方形截去一个三角形所得的五边形,其中,如图所示.现在需要用这块材料截取矩形铁皮,使得矩形相邻两边分别落在上,另一顶点落在边或边上.设,矩形的面积为.
(1)试求出矩形铁皮的面积关于的函数解析式,并写出定义域;
(2)试问如何截取(即取何值时),可使得到的矩形的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求证:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
给定椭圆,称圆心在原点,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(I)求椭圆C的方程和其“准圆”方程;
(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点M,N.
(1)当P为“准圆”与轴正半轴的交点时,求的方程;
(2)求证:|MN|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成,,,,,,组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).
(1)若一个零件的尺寸是,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设和是双曲线上的两点,线段的中点为,直线不经过坐标原点.
(1)若直线和直线的斜率都存在且分别为和,求证:;
(2)若双曲线的焦点分别为、,点的坐标为,直线的斜率为,求由四点、、、所围成四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,真命题是( )
A.和两条异面直线都相交的两条直线是异面直线
B.和两条异面直线都相交于不同点的两条直线是异面直线
C.和两条异面直线都垂直的直线是异面直线的公垂线
D.若、是异面直线,、是异面直线,则、是异面直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,O为线段AC上一点,平面ADC⊥平面ABC,且△ADO,△ABO为等腰直角三角形,斜边AO=4.
(Ⅰ)求证:AC⊥BD;
(Ⅱ)将△BDO绕DO旋转一周,求所得旋转体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com