精英家教网 > 高中数学 > 题目详情
给出下面类比推理命题(其中R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b∈R,则ab=0⇒a=0或b=0”类比推出“若a,b∈C,则ab=0⇒a=0或b=0”;
③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;
④“若a,b∈R,则a2+b2≥0”类比推出“若a,b∈C,则a2+b2≥0”.
所有命题中类比结论正确的序号是   
【答案】分析:在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对4个结论逐一进行分析,不难解答.
解答:解:①在复数集C中,若两个复数满足a-b=0,则它们的实部和虚部均相等,则a,b相等.故①正确;
②在复数集C中,若两个复数满足ab=0,则它们的中必有一个为零.故②正确;
③若a,b∈C,当a=1+i,b=i时,a-b=1>0,但a,b 是两个虚数,不能比较大小.故③错误
④若a,b∈C,当a=i,b=i时,a2+b2=-2<0,不能得出a2+b2≥0,故④错.
故所有命题中类比结论正确的序号是 ①②.
故答案为:①②.
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).但类比推理的结论不一定正确,还需要经过证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)
①“若a,b∈R,则a-b=0?a=b”类比推出“若a,b∈C,则a-b=0?a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+di?a=c,b=d”,类比推出“若a,b,c,d∈Q,则a+b
2
=c+d
2
?a=c,b=d
”;
③“若a,b∈R,则a-b>0?a>b”类比推出“若a,b∈C,则a-b>0?a>b”;
④“若x∈R,则|x|<1?-1<x<1”类比推出“若x∈C,则|z|<1?-1<z<1
其中类比结论正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”;
②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则复数b=d”
③“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”
其中类比得到的结论正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面类比推理命题:
①“若a•3=b•3,则a=b”类推出“若a•0=b•0,则a=b”;
②“若(a+b)c=ac+bc”类推出“
a+b
c
=
a
c
+
b
c
(c≠0)
”;
③“(ab)n=anbn”类推出“(a+b)n=an+bn”;
④“ax+y=ax•ay(0<a≠1)”类推出“loga(x+y)=logax•logay(0<a≠1)”.
其中类比结论正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集),其中类比结论正确的是(  )
A、“若a,b∈R,则a2+b2=0⇒a=0且b=0”类比推出“若z1,z2∈C,则z12+z22=0⇒z1=0且z2=0”
B、“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b
2
=c+d
2
⇒a=c,b=d
C、“若a,b∈R,则a-b>0⇒a>b”类比推出“若z1,z2∈C,则z1-z2>0⇒z1>z2
D、“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“a、,b∈C,则a-b=0⇒a=b”
②“若x∈R,则|x|<1⇒-1<x<1”类比推出“若z∈C,则|z|<1⇒-1<z<1”
③“若a、b、∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b”
其中类比结论正确的个数有(  )

查看答案和解析>>

同步练习册答案