精英家教网 > 高中数学 > 题目详情

【题目】已知函数若关于的方程有且只有一个实数根,则实数k的取值范围是_____

【答案】

【解析】

作出fx)的函数图象,由直线ykx﹣2过(0,﹣2),联立,得x2kx+2=0,由△=0,解得k值,求出过(1,1)与(0,﹣2)两点的直线的斜率k,数形结合即可得到实数k的取值范围.

作出yfx)与ykx﹣2的函数图象如图所示:

直线ykx﹣2过(0,﹣2),

联立,得x2kx+2=0.

由△=k2﹣8=0,得k

又过(1,1)与(0,﹣2)两点的直线的斜率k=3.

易知直线经过点(2,0)时恰好与曲线相切.

由图可知,若关于x的方程fx)=kx﹣2有且只有一个实数根,

则实数k的取值范围为(0,3)∪{}.

故答案为:(0,3)∪{}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】P是圆上的动点,P点在x轴上的射影是D,点M满足

1)求动点M的轨迹C的方程,并说明轨迹是什么图形;

2)过点的直线l与动点M的轨迹C交于不同的两点AB,求以OAOB为邻边的平行四边形OAEB的顶点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019923日,在市举办的2019年中国农民丰收节“新电商与农业科技创新”论坛上,来自政府相关部门的领导及11所中国高校的专家学者以“农业科技创新与乡村振兴”、“新农人与脱贫攻坚”为核心议题各抒己见,农产品方面的科技创新越来越成为21世纪大国崛起的一项重大突破.科学家对某农产品每日平均增重量(单位:)与每日营养液注射量(单位:)之间的关系统计出表1一组数据:

1

(单位:

1

2

3

4

5

(单位:

2

3.5

5

6.6

8.4

1)根据表1和表2的相关统计值求关于的线性回归方程

2)计算拟合指数的值,并说明线性回归模型的拟合效果(的值在.98以上说明拟合程度好);

3)若某日该农产品的营养液注释量为,预测该日这种农产品的平均增长重量(结果精确到0.1.

附:①

2

92.4

55

25

0.04

②对于一组数据,…,,其回归线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线相互垂直,与曲线C分别相交于AB两点(不同于点O),且的倾斜角为锐角.

(1)求曲线C和射线的极坐标方程;

(2)求△OAB的面积的最小值,并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调递减区间;

(2)求实数的值,使得是函数唯一的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若对任意恒成立,求的取值范围;

2,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程恰有两个不相等的实数根, 则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,将直线绕极点逆时针旋转个单位得到直线

(1)求的极坐标方程;

(2)设直线和曲线交于两点,直线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面

.

(1)证明:

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案