精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为e=
2
,右焦点为f(c,0),方程ax2-bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )
A、在圆x2+y2=8外
B、在圆x2+y2=8上
C、在圆x2+y2=8内
D、不在圆x2+y2=8内
分析:由已知圆的方程找出圆心坐标与圆的半径r,然后根据双曲线的离心率公式找出c与a的关系,根据双曲线的平方关系,把c与a的关系代入即可得到a等于b,然后根据韦达定理表示出两根之和和两根之积,利用两点间的距离公式表示出点P与圆心的距离,把a,b及c的关系代入即可求出值,与圆的半径比较大小即可判断出点与圆的位置关系.
解答:解:由圆的方程x2+y2=8得到圆心O坐标为(0,0),圆的半径r=2
2

又双曲线的离心率为e=
c
a
=
2
,即c=
2
a,
则c2=2a2=a2+b2,即a2=b2,又a>0,b>0,得到a=b,
因为方程ax2-bx-c=0的两个实根分别为x1和x2,所以x1+x2=
b
a
,x1x2=-
c
a

则|OP|=
x12+x22
=
(x1+x22-2x1x2
=
(
b
a
)
2
+
2c
a
=
1+
2
<r=2
2

所以点P在圆x2+y2=8内.
故选C
点评:此题考查学生掌握点与圆的位置关系的判别方法,灵活运用韦达定理及两点间的距离公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为(  )
A、
5
4
B、5
C、
5
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线方程;
(2)直线y=kx+5(k≠0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是离心率为
5
的双曲线
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点)且|PF1|=λ|PF2|则λ的值为(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的虚轴长为2,焦距为2
5
,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的虚轴长为2,焦距为2
3
,则双曲线的渐近线方程为(  )

查看答案和解析>>

同步练习册答案