精英家教网 > 高中数学 > 题目详情

求半径为,圆心在直线上,且被直线所截弦的长为的圆的方程.

圆的方程为:.

解析试题分析:由圆心在直线上,设出圆心C的坐标为,则,又圆的半径为2,且被直线所截弦的长为,利用点到直线的距离公式表示出圆心到直线的距离,解得到的值,进而确定出圆心C的坐标,由圆心和半径写出圆的方程即可.
试题解析:.解:设所求圆的圆心为
则圆心到直线的距离
根据题意有:解方程组得:
所以,所求的圆的方程为:
(或)   (12分)
考点:本题考查直线与圆相交的性质、圆的标准方程、点到直线的距离公式,当直线与圆相交时,由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆C的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C相交于A、B两点,且=6,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyxmm∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点Py轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线Cx2=4y是否相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2xy-4=0与圆C交于点MN,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设PQ分别是直线lxy+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:以点C(t,)(t∈R,t≠0)为圆心的圆与轴交于点O,A,与y轴交于点O,B,其中O为原点
(1)求证:△OAB的面积为定值;
(2)设直线y=–2x+4与圆C交于点M,N,若OM=ON,求圆C的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点,其外接圆为
(1)若直线过点,且被截得的弦长为2,求直线的方程;
(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.

查看答案和解析>>

同步练习册答案