精英家教网 > 高中数学 > 题目详情
3.曲线y=$\frac{x}{2x-1}$在点(1,1)处的切线方程为(  )
A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=0

分析 求出导数,求得切线的斜率,由点斜式方程可得切线的方程.

解答 解:y=$\frac{x}{2x-1}$的导数为y′=$\frac{2x-1-2x}{(2x-1)^{2}}$=-$\frac{1}{(2x-1)^{2}}$,
 可得在点(1,1)处的切线斜率为-1,
则所求切线的方程为y-1=-(x-1),
即为x+y-2=0.
故选:B.

点评 本题考查导数的运用:求切线方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|(x+2)(x-3)<0},则A∩N(N为自然数集)为(  )
A.(-∞,-2)∪(3,+∞)B.(2,3)C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,已知b=3,A=45°,B=60°,则a=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上单调递增,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.[-2,1)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点F(1,0),长轴的左、右端点分别为A1,A2;且$\overrightarrow{F{A_1}}•\overrightarrow{F{A_2}}=-1$.
(1)求椭圆E的方程;
(2)已知点B(0,-1),经过点(1,1)且斜率为k的直线与椭圆E交于不同的两P、Q点(均异于点B),证明:直线BP与BQ的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知x${\;}^{\frac{1}{4}}$+x${\;}^{-\frac{1}{4}}$=2,求x+x-1的值;
(2)计算:($\frac{1}{16}$)${\;}^{-\frac{1}{4}}$-3${\;}^{lo{g}_{3}2}$(log34)•(log827)+2log12$\sqrt{3}$+log${\;}_{\frac{1}{12}}$$\frac{1}{4}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线l1:x+2y+t2=0和直线l2:2x+4y+2t-3=0,则当l1与l2间的距离最短时t的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于满足0<b<3a的任意实数a,b,函数f(x)=ax2+bx+c总有两个不同的零点,则$\frac{a+b-c}{a}$的取值范围是(  )
A.$({1,\frac{7}{4}}]$B.(1,2]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0
(Ⅰ)求直线l的方程
(Ⅱ)直线l与曲线y2+2x=0交于A,B两点,求|AB|

查看答案和解析>>

同步练习册答案