【题目】设抛物线的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于M.N点.
(1)若,的面积为,求抛物线方程;
(2)若A.M.F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到直线n、m距离的比值.
【答案】(1);(2)
【解析】
(1)由抛物线的定义,以及圆的对称性可得为等边三角形,可由其高线求得边长,进而表达出面积,列方程解得即可求得抛物线方程.
(2)由A.M.F三点共线,可得直线斜率,和直线方程;根据直线n与C只有一个公共点,设出直线方程,联立抛物线方程,,可求得方程;据此利用点到直线距离公式求得距离之比.
(1)由对称性以及可知
是等边三角形.
又F点到MN的距离为,故,
由抛物线定义知:点A到准线l的距离
又.
故抛物线方程为:.
(2)由对称性设,则
点A,M关于点F对称,得,
得:,直线m斜率,
所以直线m方程为.
∵,设直线n方程为:,
又因为直线n与抛物线只有一个公共点,
所以,消去得,
由,得
直线,
坐标原点到n,m距离的比值为.
科目:高中数学 来源: 题型:
【题目】已知曲线Cn:x2﹣2nx+y2=0,(n=1,2,…).从点P(﹣1,0)向曲线Cn引斜率为kn(kn>0)的切线ln,切点为Pn(xn,yn).
(1)求数列{xn}与{yn}的通项公式;
(2)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的长轴长为4,左、右顶点分别为,经过点的动直线与椭圆相交于不同的两点(不与点重合).
(1)求椭圆的方程及离心率;
(2)求四边形面积的最大值;
(3)若直线与直线相交于点,判断点是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线与x轴交于A,B两点,点Q的坐标为.
(1)是否存在b,使得,如果存在求出b值;如果不存在,说明理由;
(2)过A,B,Q三点的圆面积最小时,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右顶点为,,上、下顶点为,,记四边形的内切圆为.
(1)求圆的标准方程;
(2)已知圆的一条不与坐标轴平行的切线交椭圆于P,M两点.
(i)求证:;
(ii)试探究是否为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )
A. 110B. 114C. 124D. 125
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.
(1)列出甲、乙两种产品满足的关系式,并画出相应的平面区域;
(2)在一个生产周期内该企业生产甲、乙两种产品各多少吨时可获得利润最大,最大利润是多少?
(用线性规划求解要画出规范的图形及具体的解答过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com