【题目】在平面直角坐标系中,已知圆经过抛物线与坐标轴的三个交点.
(1)求圆的方程;
(2)经过点的直线与圆相交于,两点,若圆在,两点处的切线互相垂直,求直线的方程.
【答案】(1)(2)和.
【解析】
(1)方法一、求得抛物线与坐标轴的三个交点,设出圆的一般式方程,代入三点坐标,解方程组可得D,E,F,即可得到所求圆方程;方法二、由抛物线方程与圆的一般式方程,可令y=0,可得D,F,再由抛物线与y轴的交点,可得E,即可得到所求圆方程;
(2)求圆C的圆心和半径,圆C在A,B两点处的切线互相垂直,可得∠ACB,求得C到直线l的距离,讨论直线l的斜率是否存在,由点到直线的距离公式,计算可得所求直线方程.
(1)方法一:抛物线与坐标轴的三个交点坐标为,,.
设圆的方程为,
则 , 解得
所以圆的方程为.
方法二:设圆的方程为.
令,得.
因为圆经过抛物线与轴的交点,
所以与方程同解,
所以,.
因此圆.
因为抛物线与轴的交点坐标为,
又所以点也在圆上,所以,解得.
所以圆的方程为.
(2)由(1)可得,圆:,
故圆心,半径.
因为圆在,两点处的切线互相垂直,所以.
所以到直线的距离.
① 当直线的斜率不存在时, ,符合题意;
② 当直线的斜率存在时,设,即,
所以,解得,
所以直线,即.
综上,所求直线的方程为和.
方法三:①当直线的斜率存在时,设直线的方程为,
,,将直线的方程代入圆的方程得:
,
即
,.
因为圆在点,两点处的切线互相垂直,所以,
所以,即,
所以,
即,
即,
,
即,解得,所以直线:,
即.
②当直线的斜率不存在时,:,符合题意;
综上,所求直线的方程为和.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象;
(2)求出函数f(x)(x>0)的解析式;
(3)若方程f(x)=a恰有3个不同的解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购消费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照, 分组,得到如下频率分布直方图:
根据调查,该电子商务公司制定了发放电子优惠券的办法如下:
(1)求购物者获得电子优惠券金额的平均数;
(2)从购物者中随机抽取10人,这10人中获得电子优惠券的人数为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量(单位:千克)与时间(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是( ).
A.在前三小时内,每小时的产量逐步增加
B.在前三小时内,每小时的产量逐步减少
C.最后一小时内的产量与第三小时内的产量相同
D.最后两小时内,该车间没有生产该产品
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com