精英家教网 > 高中数学 > 题目详情
已知F1,F2为椭圆x2+6y2=36的两个焦点,P为椭圆上一点且PF1⊥PF2,则△F1PF2的面积是(  )
A.36B.12C.6D.4
椭圆x2+6y2=36,所以a=6,b=
6
,c=
30

根据椭圆的定义,PF1+PF2=2a=10 ①
∵PF1⊥PF2,由勾股定理得,PF12+PF22=F1F22=4c2=4×(36-6)=120 ②
2-②得2PF1×PF2=144-120=24
∴S△F1PF2=
1
2
×PF1×PF2=
1
2
×12=6
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
4
+
y2
3
=1,F1F2是它的两个焦点,P是这个椭圆上任意一点,那么当|PF1|•|PF2|取最大值时,P、F1、F2三点(  )
A.共线
B.组成一个正三角形
C.组成一个等腰直角三角形
D.组成一个锐角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P在椭圆x2+2y2=2上,F1、F2分别是椭圆的两焦点,且∠F1PF2=90°,则△F1PF2的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两个焦点分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
5
+
y2
4
=1
的焦距是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

命题P“曲线sinα•x2+cosα•y2=1为焦点在y轴上的椭圆”,写出让命题P成立的一个充分条件______(请填写关于α的值或区间)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为4,F1F2分别是椭圆C的左,右焦点,直线y=x与椭圆C在第一象限内的交点为A,△AF1F2的面积为2
6
,点P(x0,y0),是椭圆C上的动点w.
(1)求椭圆C的方程;
(2)若∠F1PF2为钝角,求点P的横坐标x0的取值范围;
(3)求
3
PF1+
2
PA的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

AB是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则KAB•KOM的值为(  )
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(-3,0),F2(3,0),则椭圆的方程为(  )
A.
x2
12
+
y2
3
=1
B.
x2
25
+
y2
16
=1
C.
x2
45
+
y2
36
=1
D.
x2
81
+
y2
72
=1

查看答案和解析>>

同步练习册答案