精英家教网 > 高中数学 > 题目详情

【题目】如图,已知A,B,C为直角坐标系xOy中的三个定点

(Ⅰ)若点D为ABCD的第四个顶点,求||;

(Ⅱ)若点P在直线OC上,且·=4,求点P的坐标.

【答案】(1).(2)(-1,1)或(4,-4).

【解析】试题分析:(1)由图得到点的坐标,根据点点距得到||=;(2)根据向量坐标化得到·=(5+2λ)(1+2λ)+(3-2λ)(-3-2λ)=4,解得λ=-2,从而得到点的坐标.

解析:

(I)由图可知A(5,3),B(1,-3),C(-2,2),

所以,B=(4,6),BC=(-3,5),所以,||=|+|==.

(Ⅱ)因为点P在直线OC上,所以可设=(-2λ,2λ),

所以,=(5+2λ,3-2λ),=(1+2λ,-3-2λ),

所以,·=(5+2λ)(1+2λ)+(3-2λ)(-3-2λ)=4,解得λ=或-2.

故点P的坐标为(-1,1)或(4,-4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分条件,则¬q是p成立的充分不必要条件.
其中真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 则( )
A.对于任意正实数x恒有f(x)≥g(x)
B.存在实数x0 , 当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)
D.存在实数x0 , 当x>x0时,恒有f(x)<g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷份, 名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).

(1)要从这名中小学中用分层抽样的方法抽取名中小学生进一步调查,则在(小时)时间段内应抽出的人数是多少?

(2)若希望的中小学生每天使用互联网时间不少于(小时),请估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x),当x≥0时,
f(x)=
则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为(  )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英格兰足球超级联赛,简称英超,是英国足球最高等级的职业足球联赛,也是世界最高水平的职业足球联赛之一,目前英超参赛球队有20个,在2014-2015赛季结束后将各队积分分成6段,并绘制出了如图所示的频率分布直方图(图中各分组区间包括左端点,不包括右端点,如第一组表示积分在[30,40)内).根据图中现有信息,解答下面问题:

(Ⅰ)求积分在[40,50)内的频率,并补全这个频率分布直方图;

(Ⅱ)从积分在[40,60)中的球队中任选取2个球队,求选取的2个球队的积分在频率分布直方图中处于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,当x≥0时,f(x)= .g(x)=
(1)求当x<0时,函数f(x)的解析式,并在给定直角坐标系内画出f(x)在区间[﹣5,5]上的图象;(不用列表描点)

(2)根据已知条件直接写出g(x)的解析式,并说明g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[﹣2,t](t>﹣2)上的函数f(x)=(x2﹣3x+3)ex(其中e为自然对数的底).
(1)当t>1时,求函数y=f(x)的单调区间;
(2)设m=f(﹣2),n=f(t),求证:m<n;
(3)设g(x)=f(x)+(x﹣2)ex , 当x>1时,试判断方程g(x)=x的根的个数.

查看答案和解析>>

同步练习册答案