精英家教网 > 高中数学 > 题目详情

已知圆方程为
(1)求圆心轨迹的参数方程C;
(2)点是(1)中曲线C上的动点,求的取值范围.

(1)(2)-≤2x+y≤。 

解析试题分析:将圆的方程整理得:(x-4cos)2+(y-3sin)2=1 设圆心坐标为P(x,y)
   --------5分
(2)2x+y=8cos+3sin =
∴ -≤2x+y≤-……………10分
考点:本题主要考查圆的方程,参数方程的应用。
点评:容易题,将圆的一般方程化为标准方程,即得圆心坐标,从而得到圆心的轨迹方程。(2)体现参数方程在求线性函数值域中的应用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中,圆的参数方程为为参数),以为极轴建立极坐标系,直线的极坐标方程为.
⑴写出直线的直角坐标方程和圆的普通方程;
⑵求圆截直线所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆轴于两点,曲线是以为长轴,直线:为准线的椭圆.

(1)求椭圆的标准方程;
(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;
(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知⊙的圆心,被轴截得的弦长为
(Ⅰ)求圆的方程;
(Ⅱ)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2).

(1)求以OB为直径的圆C的极坐标方程,然后化成直角方程;
(2)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切.过点的动直线与圆相交于两点,的中点.

(1)求圆的方程;
(2)当时,求直线的方程.(用一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的一动点.
 
(1)证明:面PAC面PBC;
(2)若,则当直线与平面所成角正切值为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知点,直线及圆.
(1)求过点的圆的切线方程;
(2)若直线与圆相切,求的值;
(3)若直线与圆相交于两点,且弦的长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C:.
(1)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆C外一点P向该圆引一条切线,切点为M,O为坐标原点,且有
求使得取得最小值的点P的坐标

查看答案和解析>>

同步练习册答案