精英家教网 > 高中数学 > 题目详情

【题目】将函数y=sinx的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变),再将所得的图象向左平移 个单位长度后得到函数f(x)的图象
(1)写出函数f(x)的解析式;
(2)若对任意的x∈[﹣ ],f2(x)﹣mf(x)﹣1≤0恒成立,求实数m的取值范围;
(3)求实数a和正整数n,使得F(x)=f(x)﹣a在[0,nπ]上恰有2017个零点.

【答案】
(1)解:把函数y=sinx的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变),可得y=sin2x的图象;

再将所得的图象向左平移 个单位长度后得到函数f(x)=sin2(x+ )=sin(2x+ )的图象,

故函数f(x)的解析式为 f(x)=sin(2x+ ).


(2)解:若对任意的x∈[﹣ ],2x+ ∈[0, ],f(x)=sin(2x+ )∈[0,1],f2(x)﹣mf(x)﹣1≤0恒成立,

令t=f(x)∈[0,1],则g(t)=t2﹣mt﹣1≤0恒成立,故有g(0)=﹣1≤0,且 g(1)=﹣m≤0,解得m≥0.


(3)解:∵F(x)=f(x)﹣a在[0,nπ]上恰有2017个零点,故f(x)的图象和直线y=a在[0,nπ]上恰有2017个交点.

在[0,π]上,2x+ ∈[ ].

①当a>1,或a<﹣1时,f(x)的图象和直线y=a在[0,nπ]上无交点.

②当a=1,或a=﹣1时,f(x)的图象和直线y=a在[0,π]仅有一个交点,

此时,f(x)的图象和直线y=a在[0,nπ]上恰有2017个交点,则n=2017.

③当﹣1<a< ,或 <a<1时,f(x)的图象和直线y=a在[0,π]上恰有2个交点,

f(x)的图象和直线y=a在[0,nπ]上有偶数个交点,不会有2017个交点.

④当a= 时,f(x)的图象和直线y=a在[0,π]上恰有3个交点,

此时,n=1008,才能使f(x)的图象和直线y=a在[0,nπ]上有2017个交点.

综上可得,当a=1,或a=﹣1时,n=2017;当a= 时,此时,n=1008.


【解析】(1)利用函数y=Asin(ωx+φ)的图象变换规律,求得f(x)的解析式.(2)令t=f(x)∈[0,1],则g(t)=t2﹣mt﹣1≤0恒成立,再根据二次函数的性质可得g(0)=﹣1≤0,且 g(1)=﹣m≤0,由此解得m的范围.(3)由题意可得f(x)的图象和直线y=a在[0,nπ]上恰有2017个交点,分类讨论,求得a、n的值.
【考点精析】认真审题,首先需要了解函数y=Asin(ωx+φ)的图象变换(图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=27,定义域为R的函数f(x)= 是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=kx﹣g(x)在(0,1)上有零点,求k的取值范围;
(3)若对任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,P为双曲线上一点,F1 , F2是双曲线的两个焦点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时. (Ⅰ)若甲停车1小时以上且不超过2小时的概率为 ,停车付费多于14元的概率为 ,求甲停车付费恰为6元的概率;
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标

元件甲

8

12

40

32

8

元件乙

7

18

40

29

6

(1)试分别估计元件甲、乙为正品的概率;

(2)生产一件元件甲,若是正品可盈利40元,若是次品则亏损5元,生产一件元件乙,若是正品可盈利50元,若是次品则亏损10元.在(1)的前提下:

(i)记为生产1件甲和1件乙所得的总利润,求随机变量的分布列和数学期望;

(ii)求生产5件元件乙所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)>f(x),且f(x+2)为奇函数,f(4)=﹣1,则不等式f(x)<ex的解集为(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3 ax2+(a﹣1)x+1在区间(2,3)内为减函数,在区间(5,+∞)为增函数,则实数a的取值范围是(
A.[3,4]
B.[5,7]
C.[4,6]
D.[7,8]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2 012名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2 012人中剔除12人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 012人中,每人入选的概率(
A.不全相等
B.均不相等
C.都相等,且为
D.都相等,且为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=﹣an﹣( n1+2(n∈N*),数列{bn}满足bn=2nan . (Ⅰ)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)设cn=log2 ,数列{ }的前n项和为Tn , 求满足Tn (n∈N*)的n的最大值.

查看答案和解析>>

同步练习册答案