精英家教网 > 高中数学 > 题目详情
11.设变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≥4\\ x-y≤4\\ x-2y≥2\end{array}\right.$,则目标函数z=x+y-3的最小值为(  )
A.-2B.$-\frac{5}{3}$C.-1D.5

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合的得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}2x+y≥4\\ x-y≤4\\ x-2y≥2\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{2x+y=4}\\{x-y=4}\end{array}\right.$,解得A($\frac{8}{3},-\frac{4}{3}$),
化目标函数z=x+y-3为y=-x+z+3,
由图可知,当直线y=-x+z+3过A时,直线在y轴上的截距最小,z有最小值为$\frac{8}{3}-\frac{4}{3}-3=-\frac{5}{3}$.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知方程x2-x+k=0的根x1,x2,满足x12+x22=13,求
(1)k的值;
(2)解不等式x2-x+k≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax+$\frac{1}{x+1}$+$\frac{1}{x-1}$,a∈R.
(Ⅰ)判断函数f(x)的奇偶性,并说明理由;
(Ⅱ)当a<2时,证明:函数f(x)在(0,1)上单调递减;
(Ⅲ)若对任意的x∈(0,1)∪(1,+∞),不等式(x-1)[f(x)-$\frac{2}{x}$]≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={2,4,6,8},集合B={1,4,5,6},则A∩B等于(  )
A.{2,4,6,8}B.{1,2,5}C.{1,2,4,6,8}D.{4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{9}=1$(a>0)的一条渐近线方程为y=2x,则a的值为(  )
A.$\frac{3}{2}$B.$3\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠A=30°,∠C=120°,$AB=6\sqrt{3}$,则AC的长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三个数0.993,log20.6,log3π的大小关系为(  )
A.log3π<0.993<log20.6B.log20.6<log3π<0.993
C.0.993<log20.6<log3πD.log20.6<0.993<log3π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到160辆/千米时,造成堵塞,此时车流速度为0千米/小时,当车流速度不超过40辆/千米时,车流速度均为60千米/小时,已知当40≤x≤160时,v是x的一次函数.
(1)当0≤x≤160时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某点的车辆数,单位:辆/小时),f(x)=x•y(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow a$,$\overrightarrow b$是非零向量,则由|$\overrightarrow a$|=|$\overrightarrow b$|可以得到($\overrightarrow a$+$\overrightarrow b$)与($\overrightarrow a$-$\overrightarrow b$)的位置关系是($\overrightarrow a$+$\overrightarrow b$)⊥($\overrightarrow a$-$\overrightarrow b$).

查看答案和解析>>

同步练习册答案