精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥的底面为等腰梯形,,,垂足为是四棱锥的高。

(Ⅰ)证明:平面 平面
(Ⅱ)若,60°,求四棱锥的体积。
(1)由PH是四棱锥P-ABCD的高,得到ACPH,又ACBD,推出AC平面PBD.
故平面PAC平面PBD.
(2)   

试题分析:(1)因为PH是四棱锥P-ABCD的高。
所以ACPH,又ACBD,PH,BD都在平面PHD内,且PHBD=H.
所以AC平面PBD.
故平面PAC平面PBD.
(2)因为ABCD为等腰梯形,ABCD,ACBD,AB=.
所以HA=HB=.
因为APB=ADR=600
所以PA=PB=,HD=HC=1.
可得PH=.
等腰梯形ABCD的面积为S=AC x BD = 2+.
所以四棱锥的体积为V=x(2+)x= 
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题(I)较为简单,(II)则体现了“一作、二证、三计算”的解题步骤。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正三棱柱ABC-A1B1C1中,AB=2.若二面角C-AB-C1的大小为60°,则异面直线A1B1和BC1所成角的余弦值为
 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成直二面角,如图二,在二面角中.

(1)求证:BD⊥AC;
(2)求D、C之间的距离;
(3)求DC与面ABD成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条不同的直线,是两个不同的平面,下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面和直线,给出下列条件:①;②;③;④;⑤.则使成立的充分条件是      .(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,正三棱柱中,D是BC的中点,

(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中真命题的是(  )
A.若,则B.若 ,则
C.若D.若,则

查看答案和解析>>

同步练习册答案