精英家教网 > 高中数学 > 题目详情

【题目】春季气温逐渐攀升,病菌滋生传播快,为了确保安全开学,学校按30名学生一批,组织学生进行某种传染病毒的筛查,学生先到医务室进行血检,检呈阳性者需到防疫部门]做进一步检测.学校综合考虑了组织管理、医学检验能力等多万面的因素,根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检学生随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样合格,不必再做进一步的检测;若结果呈阳性,则本组中的每名学生再逐个进行检测.现有两个分组方案:方案一:将30人分成5组,每组6人;方案二:将30人分成6组,每组5人.已知随机抽一人血检呈阳性的概率为05%,且每个人血检是否呈阳性相互独立.

(Ⅰ)请帮学校计算一下哪一个分组方案的工作量较少?

(Ⅱ)已知该传染疾病的患病率为045%,且患该传染疾病者血检呈阳性的概率为999%,若检测中有一人血检呈阳性,求其确实患该传染疾病的概率.(参考数据:(

【答案】(Ⅰ)方案一工作量更少.(Ⅱ)0.8991

【解析】

(Ⅰ)设方案一中每组的化验次数为X,则X的取值为17,分别求出相应的概率,求出,从而方案一的化验总次数的期望值为:次.设方案二中每组的化验次数为Y,则Y的取值为16,分别求出相应的概率,求出.从而方案二的化验总次数的期望为次.由此能求出方案一工作量更少.

(Ⅱ)设事件A:血检呈阳性,事件B:患疾病,由题意得,由此利用条件概率能求出该职工确实患该疾病的概率.

解:(1)设方案一中每组的化验次数为X,则X的取值为17

X的分布列为:

X

1

7

P

0970

0030

故方案一的化验总次数的期望值为:次.

设方案二中每组的化验次数为Y,则Y的取值为16

Y的分布列为:

Y

1

6

P

0975

0025

∴方案二的化验总次数的期望为次.

∴方案一工作量更少.

2)设事件A:血检呈阳性,事件B:患疾病,

则由题意得

由条件概率公式可得

∴该职工确实患该疾病的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设直线的交点为,当变化时点的轨迹为曲线.

1)求出曲线的普通方程;

2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线上的动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:

愿意购买该款手机

不愿意购买该款手机

总计

40岁以下

600

40岁以上

800

1000

总计

1200

1)根据图中的数据,试估计该款手机的平均使用时间;

2)请将表格中的数据补充完整,并根据表中数据,判断是否有999%的把握认为愿意购买该款手机市民的年龄有关.

参考公式:,其中

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在二十世纪初提出的23个数学问题之一.可以这样描述:存在无穷多个素数,使得是素数,称素数对为孪生素数.在不超过15的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线

(Ⅰ)求曲线被直线截得的弦长;

(Ⅱ)与直线垂直的直线与曲线相切于点,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求在点处的切线方程;

2)当时,证明:

3)判断曲线是否存在公切线,若存在,说明有几条,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于直线对称,则函数的单调递增区间为( )

A.(02)B.[01)C.(﹣∞,1]D.(01]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)设,若对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列对任意都有(其中是常数) .

(Ⅰ)当时,求

(Ⅱ)当时,若,求数列的通项公式;

(Ⅲ)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.时,设是数列的前项和,,试问:是否存在这样的“封闭数列”,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案