精英家教网 > 高中数学 > 题目详情
(2010•邯郸二模)已知向量
a
=(
1
2
cosx,
3
sinx),
b
=(4cosx,2cosx)
,函数f(x)=
a
b
+k(k∈R)

(Ⅰ)求f(x)的单调增区间;
(Ⅱ)若x∈[0,π]时,f(x)的最大值为4,求k的值.
分析:直接利用向量的数量积求出函数的表达式,通过二倍角公式与两角和的正弦函数化简函数的表达式,
(Ⅰ)利用正弦函数的单调增区间,求出函数的单调增区间即可.
(Ⅱ)结合x的范围,求出2x+
π
6
的范围,然后利用函数的最大值,求出k的值即可.
解答:解:由
a
=(
1
2
cosx,
3
sinx),
b
=(4cosx,2cosx)

f(x)=
a
b
+k
=2cos2x+2
3
sinxcosx=1+cos2x+
3
sin2x+k=2sin(2x+
π
6
)+1+k.
(Ⅰ)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
从而可得函数的单调增区间为[kπ-
π
3
,kπ+
π
6
],k∈Z.
(Ⅱ)由x∈[0,π],2x+
π
6
∈[
π
6
13π
6
],
故sin(2x+
π
6
)∈[-1,1],
f(x)的最大值为4,所以1+1+k=4,
所以k=2.
点评:本题考查向量的数量积,二倍角公式两角和的正弦函数,三角函数的基本性质,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•邯郸二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},则集合M的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•邯郸二模)设二元一次不等式组
x≥1
y≥4
x+y-6≤0
所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•邯郸二模)如果函数y=x2+bx+c对任意的实数x,都有f(1+x)=f(-x),那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•邯郸二模)设数列{an} 为等差数列,且a5=14,a7=20,数列{bn} 的前n项和为Sn=1-(
13
)
n
(n∈N*),
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案