精英家教网 > 高中数学 > 题目详情
已知集合A={1,2,x},B={1,x2},若A∪B=A,求满足条件的实数x的取值的集合.
考点:并集及其运算
专题:集合
分析:集合A={1,2,x},B={1,x2},A∪B={1,2,x},需要进行分类讨论,x2=x或x2=2,都满足,然后利用集合的互异性进行判断;
解答: 解:因为集合A={1,2,x},B={1,x2},
A∪B={1,2,x},
若x2=x,可得x=1或0,x=1时集合A有重复的元素,故x≠1,可得x=0满足题意;
若x2=2,可得x=±
2
,代入集合A、B满足题意;
∴满足条件的实数x的集合为{0,
2
,-
2
},
故答案为:{0,
2
,-
2
};
点评:此题主要考查集合的三要素,解题过程中用到了分类讨论的思想,此题是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过直线x=-2上的动点P作抛物线y2=4x的两条切线PA,PB,其中A,B为切点.
(1)若切线PA,PB的斜率分别为k1,k2,求证:k1k2为定值;
(2)求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线(1+λ)x+(2λ-1)y-3λ+2=0恒过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数a、b、c都是实数,f(x)=ax3+bx2+cx-34的导函数为f′(x),f′(x)≤0的解集为{x|-2≤x≤3},若f(x)的极小值等于-115,则a的值是(  )
A、-  
81
22
B、
1
3
C、2
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是平行四边形,E为PA的中点.
(1)若F为线段PD靠近D的一个三等分点,求证BE∥平面ACF;
(2)若平面PAC⊥平面PCD求证:PC⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是假命题的是
 

(A)?m∈R,使f(x)=(m-1)•x m2-4m+3是幂函数;
(B)?φ∈R,函数f(x)=sin(x+φ)都不是偶函数;
(C)?α,β∈R,使cos(α+β)=cosα+cosβ;
(D)?α>0,函数f(x)=ln2x+lnx-a都有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(x≠0,a∈R),若f(x)在区间[2,+8)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2+ax)ex(a≠0)
(1)f(x)在x=-3处取到极值,求f(x)的单调区间;
(2)是否存在实数a是f(x)≥a2x恒成立?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在锐角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(1)求证:tanA=2tanB;
(2)求tanA的值.

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�