精英家教网 > 高中数学 > 题目详情

设函数(为实常数)为奇函数,函数().
(1)求的值;
(2)求上的最大值;
(3)当时,对所有的恒成立,求实数的取值范围.

(1);(2);(3).

解析试题分析:(1)根据为奇函数得到,恒有,从而计算出的值;(2)根据指数函数的图像与性质对进行分类讨论确定函数的单调性,从而由单调性求出的最大值;(3)先根据(2)计算出,然后将不等式的恒成立问题转化成恒成立,接着构造关于的函数,从而列出不等式组,求解不等式即可得出的取值范围.
试题解析:(1)由,∴      2分
(2)∵                3分
①当,即时,上为增函数
最大值为                    5分
②当,即时,上为减函数
的最大值为                  7分
                  8分
(3)由(2)得上的最大值为
上恒成立         10分


所以                    14分
考点:1.一次与二次函数的图像与性质;2.指数函数的图像与性质;3.二次不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数上不具有单调性,求实数的取值范围;
(2)若.
(ⅰ)求实数的值;
(ⅱ)设,当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;
(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.
(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?
(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),函数定义为:对每一个给定的实数
(1)求证:当满足条件时,对于,
(2)设是两个实数,满足,且,若,求函数在区间上的单调递增区间的长度之和.(闭区间的长度定义为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录。为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中,a为正常数);已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润是大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种海洋生物身体的长度(单位:米)与生长年限t(单位:年)
满足如下的函数关系:.(设该生物出生时t=0)
(1)需经过多少时间,该生物的身长超过8米;
(2)设出生后第年,该生物长得最快,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案