精英家教网 > 高中数学 > 题目详情
15.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$=1|,$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根据条件,对$|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{5}$两边平方便可求出${\overrightarrow{b}}^{2}$的值,进而求出$|\overrightarrow{b}|$的值.

解答 解:根据条件,
$(\overrightarrow{a}+\overrightarrow{b})^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=$1+2+{\overrightarrow{b}}^{2}=5$;
∴${\overrightarrow{b}}^{2}=2$;
∴$|\overrightarrow{b}|=\sqrt{2}$.
故选B.

点评 考查数量积的运算,以及数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设点$A(-2,\sqrt{3})$,B(2,0),点M在椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$上运动,当|MA|+|MB|最大时,点M的坐标为8+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-2x+2与函数$g(x)=-{x^2}+ax+b-\frac{1}{2}$的一个交点为P,以P为切点分别作函数f(x),g(x)的切线l1,l2,若l1⊥l2,则ab的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足an-an+1=an+1an(n∈N*),数列{bn}满足${b_n}=\frac{1}{a_n}$,且b1+b2+…+b10=65,则an=$\frac{1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.新学年伊始,附中社团开始招新.某高一新生对“大观天文社”、“理科学社”、“水墨霓裳社”很感兴趣.假设他能被这三个社团接受的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,点E为AD边上的中点,过点D作DF∥BC交AB于点F,现将此直角梯形沿DF折起,使得A-FD-B为直二面角,如图乙所示.
(1)求证:AB∥平面CEF;
(2)若AF=$\sqrt{3}$,求点A到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b∈R+,求证:a2+2b2>2ab+4b-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式x2-2x-3<0成立的充要条件是x∈(-1,3).

查看答案和解析>>

同步练习册答案