精英家教网 > 高中数学 > 题目详情
8.过直线x+y=0上一点P作圆(x+1)2+(y-5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=-x对称时,∠APB=(  )
A.30°B.45°C.60°D.90°

分析 判断圆心与直线的关系,在直线上求出特殊点,利用切线长、半径以及该点与圆心连线构成直角三角形,求出∠APB的值.

解答 解:显然圆心C(-1,5)不在直线y=-x上.
由对称性可知,只有直线y=-x上的特殊点,这个点与圆心连线垂直于直线y=-x,
从这点做切线才能关于直线y=-x对称.
所以该点与圆心连线所在的直线方程为:y-5=x+1即y=6+x,
与y=-x联立,可求出该点坐标为(-3,3),
所以该点到圆心的距离为$\sqrt{(5-3)^{2}+(1-3)^{2}}$=2$\sqrt{2}$,
由切线长、半径以及该点与圆心连线构成直角三角形,
又知圆的半径为$\sqrt{2}$.
所以两切线夹角的一半的正弦值为$\frac{\sqrt{2}}{2\sqrt{2}}$=$\frac{1}{2}$,
所以夹角∠APB=60°
故选C.

点评 本题是中档题,考查直线与圆的位置关系,直线与圆相切的关系的应用,考查计算能力,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=ex-mx2定义域为(0,+∞),值域为[0,+∞),则m的值为$\frac{{e}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…8),其回归直线方程是$\hat y=\frac{1}{3}$x+a,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,则实数a的值是(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(1,1)=1,f(m,n)∈N*(m、n∈N*),且对任意的m,n∈N*,都有:
①f(m,n+1)=f(m,n)+2;
②f(m+1,1)=2f(m,1).
则f(2014,1008)的值为22013+2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在同一时间段里,有甲、乙两个气象站相互独立地对天气进行预报,若甲气象站对天气预报的准确率为0.8,乙气象站对天气预报的准确率为0.95,在同一时间段里,求:
(1)甲、乙两个气象站对天气预报都准确的概率;
(2)至少有一个气象站对天气预报准确的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如下图所示,则该几何体为(  )
A.三棱柱B.三棱锥C.圆锥D.四棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”?(相关系数k=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{2}^{n}+1}$,k>2.706时有99%的把握具有相关性)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,sinC=$\frac{sinA+sinB}{cosA+cosB}$,则△ABC一定是(  )
A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC内,a,b,c分别为角A,B,C所对的边,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$,则角A的大小为30°.

查看答案和解析>>

同步练习册答案