精英家教网 > 高中数学 > 题目详情
(选做题)选修4-4:坐标系与参数方程
在极坐标系中,直线l的极坐标方程为θ=
π
3
(ρ∈R)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=1+2cosα
y=2sinα.
(α为参数),若直线l与曲线C交于A,B两点,求线段AB的长.
分析:求出直线的直角坐标方程,利用同角三角函数的基本关系消去参数α,得到曲线C的直角坐标方程,
求出圆心到直线的距离,利用弦长公式求得线段AB的长.
解答:解:直线l的倾斜角为60°,且经过原点,故直线的直角坐标方程为y=
3
x

利用同角三角函数的基本关系消去参数α,得到曲线C的直角坐标方程为(x-1)2+y2=4,
它是以C(1,0)为圆心,半径r=2的圆.
圆心C到直线l的距离d=
|
3
-0|
3+1
=
3
2
.∴|AB|=2
r2-d2
=2
22-(
3
2
)
2
=
13
点评:本题考查把参数方程化为普通方程的方法,点到直线的距离公式、弦长公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选做题)选修4-4:坐标系与参数方程
已知半圆C的参数方程C:
x=cosθ
y=sinθ
θ为参数且(0≤θ≤π),P为半圆C上一点,A(1,0)O为坐标原点,点M在射线OP上,线段OM与
AP
的长度均为
π
3
.?
(1)求以O为极点,x轴为正半轴为极轴建立极坐标系求点M的极坐标.
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.

查看答案和解析>>

同步练习册答案