精英家教网 > 高中数学 > 题目详情
4.已知抛物线E:y2=4x的焦点为F,准线为l,过准线l与x轴的交点P且斜率为k的直线m交抛物线于不同的两点A,B.
(1)若|AF|+|BF|=8,求线段AB的中点Q到准线的距离;
(2)E上是否存在一点M,满足$\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PM}$?若存在,求出直线m的斜率;若不存在,请说明理由.

分析 (1)根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标,求出线段AB的中点到该抛物线准线的距离.
(2)设直线m的方程为y=k(x+1),$\left\{\begin{array}{l}y=k(x+1)\\{y^2}=4x\end{array}\right.⇒$k2x2+(2k2-4)x+k2=0,利用韦达定理,结合M在抛物线上,即可得出结论.

解答 解:(1)由已知抛物线E的方程为y2=4x,
可得:F(1,0),准线l:x=-1,P(-1,0).
设A(x1,y1)   B(x2,y2
∴|AF|+|BF|=x1+1+x2+1=8,
解得x1+x2=6,
∴线段AB的中点横坐标为3,
∴线段AB的中点到该抛物线准线的距离为3+1=4.
(2)设M(x,y),$\overrightarrow{PA}$+$\overrightarrow{PB}$=(x1+1,y1)+(x2+1,y2
=(x1+x2+2,y1+y2)=(x+1,y),
$故\left\{\begin{array}{l}{x_1}+{x_2}+2=x+1,\;\;\\{y_1}+{y_2}=y\end{array}\right.⇒\left\{\begin{array}{l}{x_1}+{x_2}=x-1,\;\;\\{y_1}+{y_2}=y.\end{array}\right.$
设直线m的方程为y=k(x+1),$\left\{\begin{array}{l}y=k(x+1)\\{y^2}=4x\end{array}\right.⇒$k2x2+(2k2-4)x+k2=0,
∴$\left\{\begin{array}{l}k≠0,\;\;\\△={(2{k^2}-4)^2}-4{k^4}>0,\;\;\\{x_1}+{x_2}=\frac{{4-2{k^2}}}{k^2},\;\;\end{array}\right.$∴$\frac{{4-2{k^2}}}{k^2}=x-1$,∴$x=\frac{{4-{k^2}}}{k^2}$,${y_1}+{y_2}=k({x_1}+{x_2})+2k=k\;•\;\frac{{4-2{k^2}}}{k^2}+2k=\frac{4}{k}$.
∴$y=\frac{4}{k}$.∵M点在抛物线上,
∴${({\frac{4}{k}})^2}=4\;•\;\frac{{4-{k^2}}}{k^2}$,$\frac{16}{k^2}=\frac{16}{k^2}-4$,此方程无解.
∴不存在这样的点M.

点评 本题考查解决抛物线上的点到焦点的距离问题,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2px(p>0)与直线y=x+1相切.
(1)求抛物线C的方程;
(2)设A(x1,y1),B(x2,y2)是曲线C上两个动点,其中x1≠x2,且x1+x2=4,线段AB的垂直平分线l与x轴相交于点Q,求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\frac{1}{3}{x^3}+{a^2}{x^2}+ax+b$,当x=-1时函数f(x)的极值为$-\frac{7}{12}$,则f(1)=$\frac{25}{12}$或$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f'(x)是函数y=f(x)的导数,f''(x)是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心,若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,请根据这一发现,
(1)求三次函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的对称中心;
(2)计算$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{2016}{2017}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线ax-y=0(a≠0)与函数$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$图象交于不同的两点A,B,且点C(6,0),若点D(m,n)满足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,则m+n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(1)若a=2,求证:f(x)在(0,+∞)上为增函数;
(2)若不等式f(x)≥0的解集为[1,+∞),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解关于x的不等式:$\frac{ax}{x-1}≤1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p=0.03.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若loga(3a-1)>1(a>0,且a≠1),则实数a的取值范围为(  )
A.$({\frac{1}{3},\frac{1}{2}})$B.$({\frac{1}{3},\frac{1}{2}})∪({1,+∞})$C.(1,+∞)D.$({\frac{1}{3},1})∪({1,+∞})$

查看答案和解析>>

同步练习册答案