精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2-2aln x+(a-2)x,a∈R.

(1)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程.

(2)是否存在实数a,对任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

【答案】见解析

【解析】(1)函数f(x)=x2-2aln x+(a-2)x,f′(x)=x-+(a-2)= (x>0).当a=1时,f′(x)=,f′(1)=-2,则所求的切线方程为y-f(1)=-2(x-1),即4x+2y-3=0.

(2)假设存在这样的实数a满足条件,不妨设0<x1<x2.

>a知f(x2)-ax2>f(x1)-ax1成立,

令g(x)=f(x)-ax=x2-2aln x-2x,则函数g(x)在(0,+∞)上单调递增,

则g′(x)=x--2≥0,即2a≤x2-2x=(x-1)2-1在(0,+∞)上恒成立,则a≤-.

故存在这样的实数a满足题意,其取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求下列各式的值:

(1)2log32-log3+log38-5

(2)[(1-log63)2+log62·log618]÷log64.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4位同学在同一天的上午、下午参加身高与体重立定跳远肺活量握力台阶五个项目的测试,每位同学测试两个项目,分别在上午和下午,且每人上午和下午测试的项目不能相同.若上午不测握力,下午不测台阶,其余项目上午、下午都各测试一人,则不同的安排方式的种数为( )

A. 264 B. 72 C. 266 D. 274

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为x元/千克,政府补贴为t元/千克,根据市场调查,当16≤x≤24时,这种食品市场日供应量p万千克与市场日需求量q万千克近似地满足关系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).当p=q时的市场价格称为市场平衡价格.

(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域.

(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有极值,求实数的取值范围;

(Ⅱ)当有两个极值点(记为)时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在上的偶函数,当时,有,且当时, ,给出下列命题:

的值为;②函数在定义域上为周期是2的周期函数;

③直线与函数的图像有1个交点;④函数的值域为.

其中正确的命题序号有__________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;

②设有一个回归方程,变量增加1个单位时, 平均减少5个单位;

③线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;

④在某项测量中,测量结果服从正态分布,若位于区域的概率为0.4,则位于区域内的概率为0.6

⑤利用统计量来判断“两个事件的关系”时,算出的值越大,判断“有关”的把握就越大

其中正确的个数是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面为正三角形,,点分别为线段的中点,分别为线段上一点,且.

(1)确定点的位置,使得平面

(2)点为线段上一点,且,若平面将四棱锥分成体积相等的两部分,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是正比例函数函数g(x)是反比例函数f(1)=1,g(1)=2.

(1)求函数f(x)g(x);

(2)判断函数f(x)+g(x)的奇偶性

(3)求函数f(x)+g(x)(0,]上的最小值

查看答案和解析>>

同步练习册答案