精英家教网 > 高中数学 > 题目详情
8.已知A(1,3),B(-5,1),以AB为直径的圆的标准方程是(  )
A.(x+2)2+(y-2)2=10B.(x+2)2+(y-2)2=40C.(x-2)2+(y+2)2=10D.(x-2)2+(y+2)2=40

分析 因为线段AB为所求圆的直径,所以利用中点坐标公式求出线段AB的中点即为所求圆的圆心坐标,再利用两点间的距离公式求出圆心C与点A之间的距离即为所求圆的半径,根据求出的圆心坐标与半径写出圆的标准方程即可.

解答 解:∵A(1,3),B(-5,1),设圆心为C,
∴圆心C的坐标为C(-2,2);
∴|AC|=$\sqrt{10}$,即圆的半径r=$\sqrt{10}$,
则以线段AB为直径的圆的方程是(x+2)2+(y-2)2=10.
故选A.

点评 此题考查了中点坐标公式,两点间的距离公式以及圆的标准方程,解答本题的关键是灵活运用已知条件确定圆心坐标及圆的半径.同时要求学生会根据圆心与半径写出圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知椭圆的长轴长是焦距的2倍,则椭圆的离心率为(  )
A.2B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在五面体ABCDEF中,底面ABCD是正方形,△ADE,△BCF都是等边三角形,EF∥AB,且EF>AB,M,O分别为EF,BD的中点,连接MO.
(Ⅰ)求证:MO⊥底面ABCD;
(Ⅱ)若EF=2AB,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设向量$\vec a=(1,-1)$,$\vec b=(-1,2)$,则$(2\overrightarrow a+\overrightarrow b)•\overrightarrow a$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(I) 已知二次函数f(x)=ax2+2bx-3a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(II) 设f(x)=2x+m-1是定义在[-1,2]上的“局部奇函数”,求实数m的取值范围;
(III) 设f(x)=4x-m•2x+1+m2-3,若f(x)不是定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$y=\sqrt{1-\frac{1}{2^x}}$的定义域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow{b}$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,则tan(α+β)等于(  )
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=kx3-3kx2+b在区间[-2,2]上的最大值为3,最小值为-17,求k,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=$\sqrt{2}$,AB=AD=1,则异面直线AB与CD所成角的正切值为.(  )
A.$\sqrt{7}$B.$\frac{\sqrt{7}}{8}$C.$\frac{\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案