精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足an+2= ,n∈N*,且a1=1,a2=2.
(1)求数列{an}的通项公式;
(2)令bn=(﹣1)nanan+1 , n∈N*,求数列{bn}的前n项和Sn

【答案】
(1)解:an+2= ,n∈N*,且a1=1,a2=2.

当n为奇数时,an+2=an+2,可得奇数项成首项为1,公差为2的等差数列,且为an=n;

当n为偶数时,an+2=2an,可得偶数项成首项为2,公比为2的等差数列,且为an=2

即有an=


(2)解:令bn=(﹣1)nanan+1,n∈N*,

当n为偶数时,前n项和Sn=﹣a1a2+a2a3﹣a3a4+a4a5﹣a5a6+a6a7﹣…﹣an1an+anan+1

=﹣1×2+2×3﹣3×4+4×5﹣5×8+8×7﹣…﹣(n﹣1)2 +(n+1)2

=2×2+4×2+8×2+…+2 ×2=2(2+4+8+…+2 )=2 =4(2 ﹣1);

当n为奇数时,前n项和Sn=Sn1﹣n2 =4(2 ﹣1)﹣n2 =(2﹣n)2 ﹣4.

则数列{bn}的前n项和Sn=


【解析】(1)讨论当n为奇数时,由等差数列的通项公式可得;当n为偶数时,由等比数列的通项公式可得;(2)讨论n为偶数时,两两结合,再由等比数列的求和公式,可得所求和;当n为奇数时,前n项和Sn=Sn1﹣n2 ,化简即可得到所求和.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ +alnx(x>0,a为常数).
(1)讨论函数g(x)=f(x)﹣x2的单调性;
(2)对任意两个不相等的正数x1、x2 , 求证:当a≤0时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos22x﹣2,给出下列命题: ①β∈R,f(x+β)为奇函数;
α∈(0, ),f(x)=f(x+2α)对x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为
x1 , x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有(
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的一条对称轴,过点A(﹣4,a)作圆C的两条切线,切点分别为B、D,则直线BD的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(Ⅰ)对任意a∈R,a*0=a;
(Ⅱ)对任意Ra,b∈R,a*b=ab+(a*0)+(b*0).
关于函数f(x)=(ex)* 的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(﹣∞,0].其中所有正确说法的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为(
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x、y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为2,当 的最小值为m时,则y=sin(mx+ )的图象向右平移 后的表达式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 且6Sn=3n+1+a(n∈N+
(1)求a的值及数列{an}的通项公式;
(2)设bn=(1﹣an)log3(an2an+1),求 的前n项和为Tn

查看答案和解析>>

同步练习册答案