精英家教网 > 高中数学 > 题目详情
(2008•成都二模)已知函数f(x)=
3
sinωxcosωx-cos2ωx+
1
2
(ω>0,x∈R)的最小正周期为
π
2

(1)求f(
3
)的值,并写出函数f(x)的图象的对称中心的坐标;
(2)当x∈[
π
3
π
2
]时,求函数f(x)的单调递减区间.
分析:(Ⅰ)把f(x)的解析式利用二倍角的正弦、余弦函数公式化简,再利用两角差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据f(x)的最小正周期公式即可求出ω的值;进一步求出函数值及对称中心.
(Ⅱ)先求出整体角的范围,由正弦函数的单调递减区间[2kπ+
π
2
,2kπ+
2
]得到定义域内f(x)的单调递减区间;
解答:解:f(x)=
3
sinωxcosωx-cos2ωx+
1
2

=
3
2
sin2ωx-
1
2
 cos2ωx
=sin(2ωx-
π
6
),
(1)∵函数的最小正周期为
π
2
,ω>0
∴ω=2,
即f(x)=sin(4x-
π
6
),
∴f(
3
)=sin(
3
-
π
6
)=sin
π
2
=1,
令4x-
π
6
=kπ,
解得x=
4
+
π
24

所以函数的对称中心坐标为(
4
+
π
24
,0)(k∈Z)
(2)当x∈[
π
3
π
2
]时,4x-
π
6
∈[
6
11π
6
]
∵当4x-
π
6
∈[
6
2
]时,函数f(x)为减函数
∴当x∈[
π
3
π
2
]时,函数f(x)的单调递减区间为[
π
3
12
].
点评:本题考查解决三角函数的性质问题,应该先利用三角函数的有关的公式将函数化为一个角的正弦函数,进而求出ω,确定出f(x)的解析式是本题的突破点,然后利用整体角处理的方法求出函数的有关性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•成都二模)已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆半径为
1
2
,则
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知全集U,集合A、B为U的两个非空子集,若“x∈A”y与“x∈B”是一对互斥事件,则称A与B为一组U(A,B),规定:U(A,B)≠U(B,A).当集合U={1,2,3,4,5}时,所有的U(A,B)的组数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知函数f(x)=cos(x+θ),θ∈R,若
lim
x→0
f(π+x)-f(π)
x
=1,则函数f(x)的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)化简
sin(60°+θ)+cos120°sinθ
cosθ
的结果为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)过抛物线x2=2y上两点A(-1,
1
2
)、B(2,2)分别作抛物线的切线,两条切线交于点M.
(1)求证:∠BAM=∠BMA;
(2)记过点A、B且中心在坐标原点、对称轴为坐标轴的双曲线为C,F1、F2为C的两个焦点,B1、B2为C的虚轴的两个端点,过点B2作直线PQ分别交C的两支于P、Q,当
PB1
QB1
∈(0,4]时,求直线PQ的斜率k的取值范围.

查看答案和解析>>

同步练习册答案