精英家教网 > 高中数学 > 题目详情

【题目】如图,在圆柱中,点分别为上、下底面的圆心,平面是轴截面,点在上底面圆周上(异于),点为下底面圆弧的中点,点与点在平面的同侧,圆柱的底面半径为1,高为2.

(1)若平面平面,证明:

(2)若直线与平面所成线面角的正弦值等于,证明:平面与平面所成锐二面角的平面角大于.

【答案】(1)见证明;(2)见证明

【解析】

1)由平面FNH⊥平面NHG,得FH⊥平面NHG,又由NG平面NHG,得证.(2)以O2为坐标原点,分别以O2GO2EO2O1xyz轴建立空间坐标系O2xyz,根据直线NH与平面NFG所成线面角α的正弦值等于,得到H点坐标,再将证明平面NHG与平面MNFE所成锐二面角的平面角大于.转化成证明平面NHG与平面MNFE所成锐二面角的余弦值小于来解决.

1)由题知:面,面

因为平面

所以平面平面

所以.

2)以点为坐标原点,分别以轴建立空间直角坐标系.

所以

,则

设平面的法向量

因为,所以

所以,即法向量.

因此 .

所以,解得,所以点.

设面的法向量

因为,所以

所以,即法向量.

因为面的法向量,所以

所以面与面所成锐二面角的平面角大于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,面是边长为3的菱形.

(1)求证:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,H为PC的中点,M为AH中点,PA=AC=2,BC=1.

(Ⅰ)求证:AH⊥平面PBC;

(Ⅱ)求PM与平面AHB成角的正弦值;

(Ⅲ)在线段PB上是否存在点N,使得MN∥平面ABC,若存在,请说明点N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔AB两名选手参加某项比赛,在选拔测试期间,他们参加选拔的5次测试成绩(满分100分)记录如下:

1)从AB两人的成绩中各随机抽取一个,求B的成绩比A低的概率;

2)从统计学的角度考虑,你认为选派哪位选手参加比赛更合适?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是正三角形,四边形是菱形,点的中点.

(I)求证:// 平面

(II)若平面平面 求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图((1))和女生身高情况的频率分布直方图((2)).已知图(1)中身高(单位:)内的男生人数有16.

(Ⅰ)求在抽取的学生中,男女生各有多少人?

(Ⅱ)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为身高与性别有关”?

总计

男生人数

女生人数

总计

:参考公式和临界值表:

,

5.024

6.635

7.879

10.828

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】19的九个数字中取三个偶数四个奇数,试问:

1)能组成多少个没有重复数字的七位数?

2)上述七位数中三个偶数排在一起的有几个?

3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?

4)在(1)中任意两偶数都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如下表:

(1)根据表中的统计数据,完成下面列联表,并判断是否有的把握认为参加体育锻炼与否与性别有关?

(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.

附:

查看答案和解析>>

同步练习册答案