精英家教网 > 高中数学 > 题目详情

已知数列中,当时,总有成立,且
(Ⅰ)证明:数列是等差数列,并求数列的通项公式;
(Ⅱ)求数列的前项和

(Ⅰ).(Ⅱ)

解析试题分析:(Ⅰ)时, ,即
.∴数列是以2为首项,1为公差的等差数列.          4分
∴  ,故.                    6分
(Ⅱ)∵

两式相减得:

                               
考点:等差数列的递推公式、等差数列的定义,“错位相减法”。
点评:典型题,涉及求数列的通项公式问题,一般地通过布列方程组,求相关元素。“分组求和法”“裂项相消法”“错位相减法”是高考常考知识内容。本题难度不大。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn,且.
(1)求数列的通项公式;
(2)令,记数列的前项和为.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为正整数)。
(1) 令,求证:数列是等差数列,并求数列的通项公式;
(2) 令,求使得成立的最小正整数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列中,,公差为整数,若
(2)求前项和的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为等差数列,为数列的前项和,已知.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{ }满足 =3,   =  。设,证明数列{}是等差数列并求通项 。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是平面直角坐标系上的三点,且成等差数列,公差为
(1)若坐标为,点在直线上时,求点的坐标;
(2)已知圆的方程是,过点的直线交圆于两点,
是圆上另外一点,求实数的取值范围;
(3)若都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列的前三项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是一个等差数列,且
(Ⅰ)求的通项;  (Ⅱ)求前n项和Sn的最大值.

查看答案和解析>>

同步练习册答案