已知数列中,当时,总有成立,且.
(Ⅰ)证明:数列是等差数列,并求数列的通项公式;
(Ⅱ)求数列的前项和.
科目:高中数学 来源: 题型:解答题
已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,.
(1)若坐标为,,点在直线上时,求点的坐标;
(2)已知圆的方程是,过点的直线交圆于两点,
是圆上另外一点,求实数的取值范围;
(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列,的前三项和为,求证:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com