精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

【答案】
(1)解:∵A= ,∴由余弦定理可得: ,∴b2﹣a2= bc﹣c2

又b2﹣a2= c2.∴ bc﹣c2= c2.∴ b= c.可得

∴a2=b2 = ,即a=

∴cosC= = =

∵C∈(0,π),

∴sinC= =

∴tanC= =2


(2)解:∵ = × =3,

解得c=2

=3


【解析】(1)由余弦定理可得: ,已知b2﹣a2= c2 . 可得 ,a= .利用余弦定理可得cosC.可得sinC= ,即可得出tanC= .(2)由 = × =3,可得c,即可得出b.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤3x≤27},B={x|log2x>1}. (Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,分别是椭圆的左、右焦点.

(1)若点是第一象限内椭圆上的一点, ,求点的坐标;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 当时,解关于的不等式

(2) 若对任意时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣ )的图象上所有点的(
A.横坐标缩短到原来的 (纵坐标不变),所得图象再向左平移 个单位长度
B.横坐标缩短到原来的 (纵坐标不变),所得图象再向右平移 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不少于900人运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x﹣2)﹣ ,(a为常数且a≠0),若f(x)在x0处取得极值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,则a的取值范围(
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中既是奇函数又在区间[﹣1,1]上单调递减的是(
A.y=sinx
B.a<b
C.
D.

查看答案和解析>>

同步练习册答案