精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

【答案】D
【解析】解:根据题意,x∈[1,+∞)时,x﹣2k∈[1﹣2k,+∞);

①当1﹣2k≤0时,解得k≥ ;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,

即只要f(1﹣2k)﹣k<0即可;

∵1﹣2k≤0,∴f(1﹣2k)=﹣(1﹣2k)2

∴﹣(1﹣2k)2﹣k<0,整理得﹣1+4k﹣4k2﹣k<0,即4k2﹣3k+1>0;

∵△=(﹣3)2﹣16=﹣7<0,

∴不等式对一切实数都成立,∴k≥

②当1﹣2k>0时,解得k<

存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,

即只要f(1﹣2k)﹣k<0即可;

∵1﹣2k>0,∴f(1﹣2k)=(1﹣2k)2

∴(1﹣2k)2﹣k<0,整理得4k2﹣5k+1<0,解得 <k<1;

又∵k< ,∴ <k<

综上,k∈( )∪[ ,+∞)=( +∞);

∴k的取值范围是k∈( ,+∞).

故选:D.

【考点精析】解答此题的关键在于理解特称命题的相关知识,掌握特称命题,它的否定;特称命题的否定是全称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n层,上底由长为a个物体,宽为b个物体组成,以下各层的长、宽依次各增加一个物体,最下层成为长为c个物体,宽为d个物体组成,沈括给出求隙积中物体总数的公式为S= .已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点P(2,0),曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C的普通方程和极坐标方程;
(Ⅱ)过点P且倾斜角为 的直线l交曲线C于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线C:x2=2py(p>0)的焦点,过F的直线l与C交于A,B两点,M为AB中点,点M到x轴的距离为d,|AB|=2d+1.
(1)求p的值;
(2)过A,B分别作C的两条切线l1 , l2 , l1∩l2=N.请选择x,y轴中的一条,比较M,N到该轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),圆C的方程为x2+y2﹣4x﹣2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED= .M为棱FC上一点,平面ADM与棱FB交于点N.
(Ⅰ)求证:ED⊥CD;
(Ⅱ)求证:AD∥MN;
(Ⅲ)若AD⊥ED,试问平面BCF是否可能与平面ADMN垂直?若能,求出 的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2+ax﹣a)e1﹣x , 其中a∈R. (Ⅰ)求函数f'(x)的零点个数;
(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x的图象向左平移 个单位后,得到函数y=g(x)的图象,下列关于y=g(x)的说法正确的是( )
A.图象关于点(﹣ ,0)中心对称
B.图象关于x=﹣ 轴对称
C.图象关于点(﹣ ,0)中心对称
D.图象关于x=﹣ 轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC,侧棱PA=2,底面三角形ABC为正三角形,边长为2,顶点P在平面ABC上的射影为D,有AD⊥DB,且DB=1.
(Ⅰ)求证:AC∥平面PDB;
(Ⅱ)求二面角P﹣AB﹣C的余弦值;
(Ⅲ)线段PC上是否存在点E使得PC⊥平面ABE,如果存在,求 的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案