ÒÑÖªµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡­¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
1
4
x+
1
12
ͼÏóÉϵĵ㣬µãÁÐA1£¨x1£¬0£©¡¢A2£¨x2£¬0£©¡¢¡­¡¢An£¨xn£¬0£©£¨n¡ÊN£©Ë³´ÎΪxÖáÕý°ëÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÓÚÈÎÒân¡ÊN£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒ»¸ö¶¥½ÇµÄ¶¥µãΪBnµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{yn}2µÄͨÏʽ£¬²¢Ö¤Ã÷{yn}3ÊǵȲîÊýÁУ»
£¨2£©Ö¤Ã÷xn+2-xn5Ϊ³£Êý£¬²¢Çó³öÊýÁÐ{xn}6µÄͨÏʽ£»
£¨3£©ÎÊÉÏÊöµÈÑüÈý½ÇÐÎAn8Bn9An+110ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÀûÓõãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡­¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
1
4
x+
1
12
£¬¿ÉµÃÊýÁÐ{yn}µÄͨÏʽ£¬½ø¶øÓÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©¸ù¾Ý¡÷AnBnAn+1Óë¡÷An+1Bn+1An+2ΪµÈÑüÈý½ÇÐΣ¬¿ÉµÃ
xn+xn+1
2
=n
xn+1+xn+1
2
=n+1
£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÇó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©ÒªÊ¹¡÷AnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬Ôòxn+1-xn=2(
n
4
+
1
12
)
£¬¸ù¾Ý£¨2£©·ÖnΪÆæÊý¡¢Å¼Êýʱ£¬½øÐÐÌÖÂÛ£¬¿ÉÇó´ËʱaÖµ£®
½â´ð£º½â£º£¨1£©¡ßµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡­¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
1
4
x+
1
12

¡àyn=
1
4
n+
1
12

¡àyn+1-yn=
1
4

¡à{yn}ÊǵȲîÊýÁУ»
£¨2£©¡ß¡÷AnBnAn+1Óë¡÷An+1Bn+1An+2ΪµÈÑüÈý½ÇÐÎ
¡à
xn+xn+1
2
=n
xn+1+xn+1
2
=n+1
£®¡àxn+2-xn=2
¡àxn=
n+a-1(nΪÆæÊý)
n-a(nΪżÊý)

£¨3£©ÒªÊ¹¡÷AnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬Ôòxn+1-xn=2(
n
4
+
1
12
)

µ±nΪÆæÊýʱ£¬xn+1-xn=2£¨1-a£©£¬¡à2(
n
4
+
1
12
)=2(1-a)

¡àa=
11
12
-
n
4
(nΪÆæÊý£¬0£¼a£¼1)

n=1£¬µÃa=
2
3
£¬n=3µÃa=
1
6
£¬n¡Ý5£¬ÔòÎ޽⣻
µ±nΪżÊýʱ£¬Í¬ÀíµÃa=
1
12
n
4
(nΪżÊý£¬0£¼a£¼1)

 n=2£¬µÃ a=
7
12
£¬n¡Ý4£¬ÔòÎ޽⣻
¡à´æÔÚÖ±½ÇÈý½ÇÐΣ¬´ËʱaֵΪ
2
3
£¬
1
6
£¬
7
12
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éÊýÁÐ֪ʶ£¬¿¼²éÊýÁеÄͨÏ¿¼²é·ÖÀàÌÖÂÛ˼Ï룬ÓнÏÇ¿µÄ×ÛºÏÐÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡­£¬Bn£¨n£¬yn£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
x4
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨¢ñ£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©ÎÊÊÇ·ñ´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡­¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
1
4
x+
1
12
ͼÏóÉϵĵ㣬µãÁÐA1£¨x1£¬0£©¡¢A2£¨x2£¬0£©¡¢¡­¡¢An£¨xn£¬0£©£¨n¡ÊN£©Ë³´ÎΪxÖáÕý°ëÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÓÚÈÎÒân¡ÊN£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔ
BnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Çó{yn}µÄͨÏʽ£¬ÇÒÖ¤Ã÷{yn}ÊǵȲîÊýÁУ»
£¨2£©ÊÔÅжÏxn+2-xnÊÇ·ñΪͬһ³£Êý£¨²»±ØÖ¤Ã÷£©£¬²¢Çó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©ÔÚÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÉϺ£Ä£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡­£¬Bn£¨n£¬yn£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
x4
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©¶ÔÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1Ìí¼ÓÊʵ±Ìõ¼þ£¬Ìá³öÒ»¸öÎÊÌ⣬²¢×ö³ö½â´ð£®£¨¸ù¾ÝËùÌáÎÊÌâ¼°½â´ðµÄÍêÕû³Ì¶È£¬·Öµµ´Î¸ø·Ö£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•À¶É½ÏØÄ£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬b1£©£¬B2£¨2£¬b2£©£¬¡­£¬Bn£¨n£¬bn£©£¬¡­£¨n¡ÊN?£©Ë³´ÎΪÅ×ÎïÏßy=
1
4
x2Éϵĵ㣬¹ýµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
1
4
x2µÄÇÐÏß½»xÖáÓÚµãAn£¨an£¬0£©£¬µãCn£¨cn£¬0£©ÔÚxÖáÉÏ£¬ÇÒµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚnʹµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬ÈôÓУ¬ÇëÇó³ön£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèÊýÁÐ{
1
an•(
3
2
+cn)
}µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤£º
2
3
¡ÜSn£¼
4
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸