ÒÑÖªº¯Êýf£¨x£©=x3+ax+bÂú×ãf£¨0£©=f£¨1£©£¬ÓÖP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊÇÆäͼÏóÉϲ»Í¬Á½µã£®
£¨1£©ÇóÖ¤£ºÇúÏßy=f£¨x£©¹ØÓڵ㣨0£¬b£©ÖÐÐĶԳƣ®
£¨2£©Éè0¡Üx1£¼x2£¬Ö¤Ã÷´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹y=f£¨x£©ÔÚµãR£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏßƽÐÐÓÚPQ£¬ÓÃx1£¬x2±íʾx0£¬²¢ËµÃ÷x0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãMµÄ×ó²à»¹ÊÇÓҲ࣮
£¨3£©Éè0¡Üx1£¼x2¡Ü1£¬ÇóÖ¤£º|f£¨x1£©-f£¨x2£©|£¼1£®
·ÖÎö£º£¨1£©ÀûÓú¯Êýf£¨x£©=x3+ax+bÂú×ãf£¨0£©=f£¨1£©£¬¿ÉµÃb=1+a+b£¬¹Êa=-1£¬´Ó¶øf£¨x£©=x3-x+b£®É裨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉÏÈÎÒâÒ»µã£¬Ö¤Ã÷µã£¨x0£¬y0£©¹ØÓÚ£¨0£¬b£©µÄ¶Ô³Æµã£¨-x0£¬2b-y0£©Ò²ÔÚy=f£¨x£©ÉÏ£¬¼´¿É£»
£¨2£©y=f£¨x£©ÔÚRµã´¦µÄÇÐÏßбÂÊΪf¡ä£¨x0£©=3x02-1£¬ÓÖkPQ=
f(x1)-f(x2)
x1-x2
=x12+x1x2+x22-1£¬Áîf¡ä£¨x0£©=kPQ£¬µÃx0=
x
2
1
+x1x2+
x
2
2
3
¡Ê£¨x1£¬x2£©£¬¹Ê¿ÉÖ¤x0£¾
x1+x2
2
£¬´Ó¶øx0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãµÄÓҲࣻ
£¨3£©ÓÉ£¨2£©Öªµ±0¡Üx1£¼x2¡Ü1ʱ£¬´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹PQµÄбÂÊk=f¡ä£¨x0£©=3x02-1£¬´Ó¶ø|k|£¼2£®½ø¶ø·ÖÀàÌÖÂÛ£¬ÀûÓþø¶ÔÖµ²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÖ¤µÃ£®
½â´ð£ºÖ¤Ã÷£º£¨1£©¡ßº¯Êýf£¨x£©=x3+ax+bÂú×ãf£¨0£©=f£¨1£©£¬
¡àb=1+a+b£¬¹Êa=-1£¬´Ó¶øf£¨x£©=x3-x+b£®£¨1·Ö£©
É裨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉÏÈÎÒâÒ»µã£¬Ôòy0=f£¨x0£©=x03-x0+b£¬´Ó¶ø2b-y0=-x03+x0+b=f£¨-x0£©£¬
¹Êµã£¨x0£¬y0£©¹ØÓÚ£¨0£¬b£©µÄ¶Ô³Æµã£¨-x0£¬2b-y0£©Ò²ÔÚy=f£¨x£©ÉÏ£¬
ÔÙÓÉ£¨x0£¬y0£©µÄÈÎÒâÐÔÖªy=f£¨x£©µÄͼÏó¹ØÓÚ£¨0£¬b£©ÖÐÐĶԳƣ®£¨4·Ö£©
£¨2£©y=f£¨x£©ÔÚRµã´¦µÄÇÐÏßбÂÊΪf¡ä£¨x0£©=3x02-1£¬
ÓÖkPQ=
f(x1)-f(x2)
x1-x2
=x12+x1x2+x22-1£¬
ÓÉ0¡Üx1£¼x2£¬Áîf¡ä£¨x0£©=kPQ£¬µÃx0=
x
2
1
+x1x2+
x
2
2
3
¡Ê£¨x1£¬x2£©£¬
´Ó¶ø´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹y=f£¨x£©ÔÚR£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏßƽÐÐÓÚÖ±ÏßPQ£®£¨7·Ö£©
ÓÖx12+x1x2+x22=
3
4
(x1+x2)2+
1
4
(x1-x2)2£¾
3
4
(x1+x2)2
£¬
¹Êx0£¾
x1+x2
2
£¬¼´x0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãµÄÓҲ࣮£¨9·Ö£©
£¨3£©ÓÉ£¨2£©Öªµ±0¡Üx1£¼x2¡Ü1ʱ£¬´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹PQµÄбÂÊk=f¡ä£¨x0£©=3x02-1£¬
ÔÙÓÉx0¡Ê£¨x1£¬x2£©Öªx0¡Ê£¨0£¬1£©£¬´Ó¶ø3x02-1¡Ê£¨-1£¬2£©£¬ÓÚÊÇ|k|£¼2£®£¨11·Ö£©
´Ó¶ø¶ÔÈκÎs£¬t¡Ê[0£¬1]£¬s¡Ùt£¬ÓÐ|f£¨s£©-f£¨t£©|=k|s-t|£¼2|s-t|£®
µ±0¡Üx1£¼x2¡Ü1ÇÒ|x1-x2|¡Ü
1
2
ʱ£¬|f£¨x1£©-f£¨x2£©|£¼2|x1-x2|£¼1£»
µ±|x1-x2|£¾
1
2
ʱ£¬ÓÉ0¡Üx1£¼x2¡Ü1Öª0¡Üx1£¼
1
2
£¼x2¡Ü
1£¬
´Ó¶ø|f£¨x1£©-f£¨x2£©|=|f£¨x1£©-f£¨0£©+f£¨1£©-f£¨x2£©|¡Ü|f£¨x1£©-f£¨0£©|+|f£¨1£©-f£¨x2£©|
£¼2£¨|x1-0|+|1-x2|£©£¼2£¨x1+1-x2£©=2-2£¨x2-x1£©£¼1£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éº¯ÊýµÄ¶Ô³ÆÐÔ£¬¿¼²éÇÐÏßµÄбÂÊ£¬¿¼²é¾ø¶ÔÖµ²»µÈʽµÄÔËÓã¬×ÛºÏÐÔÇ¿£¬ÓÐÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһģ£©ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸