精英家教网 > 高中数学 > 题目详情
15.已知向量$\vec a,\vec b$的夹角为60°,$|\vec a|=2,|\vec b|=1$,则$\vec a$在$\vec b$上的投影为1.

分析 根据平面向量数量积的定义,得到向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>,计算即可.

解答 解:向量$\vec a,\vec b$的夹角为θ=60°,|$\overrightarrow{a}$|=2,
则$\vec a$在$\vec b$上的投影为|$\overrightarrow{a}$|×cosθ=2×cos60°=1.
故答案为:1.

点评 本题考查了根据平面向量的数量积求向量投影的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的顶点到渐近线的距离为(  )
A.1B.2C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的等比数列{an}的前n项和为Sn,若a5=2a3+a4,且S5=62
(1)求数列{an}的通项公式
(2)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{{sin({A+B})}}{a+b}=\frac{sinA-sinB}{a-c}$,b=3.
(Ⅰ)求角B;
(Ⅱ)若$cosA=\frac{{\sqrt{6}}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α,β是相交平面,直线l?平面α,则“l⊥β”是“α⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{2i}{1-i}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图是遂宁市某校高二年级20名学生某次体育考试成绩(单位:分)的频率分布直方图:
(1)求频率分布直方图中a的值,以及成绩落在[50,60)与[60,70)中的学生人数;
(2)请估计出20名学生成绩的中位数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{1-x}{x}$≤0的解集为{x|x<0,或x≥1 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高三年级在学期末进行的质量检测中,考生数学成绩情况如下表所示:
数学成绩[90,105)[105,120)[120,135)[135,150]
文科考生5740246
理科考生123xyz
已知用分层抽样方法在不低于135分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了1名.
(1)求z的值;
(2)如图是文科不低于135分的6名学生的数学成绩的茎叶图,计算这6名考生的数学成绩的方差;
(3)已知该校数学成绩不低于120分的文科理科考生人数之比为1:3,不低于105分的文科理科考生人数之比为2:5,求理科数学及格人数.

查看答案和解析>>

同步练习册答案