精英家教网 > 高中数学 > 题目详情
9.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么2x-y的最大值为(  )
A.2B.1C.-2D.-3

分析 先根据约束条件画出可行域,再利用几何意义求最值,z=2x-y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.

解答 解:先根据约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$画出可行域,
当直线2x-y=t过点A(0,-1)时,
t最大是1,
故选:B.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,an+1=$\frac{n{a}_{n}-1}{n+1}$(n∈N+).
(1)计算a2,a3,a4,并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是(  )
①若m⊥α,n⊥m,则n∥α;       
②若α∥β,n⊥α,m∥β,则n⊥m;
③若m∥α,n⊥β,m⊥n,则α⊥β;
④若m∥α,n⊥β,m∥n,则α⊥β.
A.②③B.③④C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在(x-3)7的展开式中,x5的系数是189(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用数学归纳法证明“(n+1)(n+2)(n+3)…(n+n)=2n•1•3…(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是(  )
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+2}{k+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2cos($\frac{π}{2}$-x)cos(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)求函数f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=$\sqrt{2}$,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC
(Ⅱ)PD的中点为G,求证:CG∥平面PAF
(Ⅲ)求三棱锥A-CDG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线的渐近线为y=±$\sqrt{3}$x,则它的离心率可能是(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}$或$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图的程序框图所描述的算法,若输入m=209,n=121,则输出的m的值为(  )
A.0B.11C.22D.88

查看答案和解析>>

同步练习册答案