精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的方程为 ,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线的斜率存在,取为,取直线的斜率为,请验证是否为定值?若是,计算出该值;若不是,请说明理由.

【答案】(Ⅰ) (Ⅱ)-2为定值.

【解析】(Ⅰ)由AB直线与抛物线交于两点可知,直线AB不与x轴垂直,故可设,代入

整理得: ,方程①的判别式,故时均满足题目要求.

记交点坐标为,则为方程①的两根,

故由韦达定理可知,

将抛物线方程转化为,则,故A点处的切线方程为

整理得

同理可得,B点处的切线方程为,记两条切线的交点

联立两条切线的方程,解得点坐标为

故点P的轨迹方程为

(Ⅱ)当时, ,此时直线PQ即为y轴,与直线AB的夹角为

时,记直线PQ的斜率,又由于直线AB的斜率为

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额(单位:百万元)之间有如下对应数据:
如果y与x之间具有线性相关关系.

(1)作出这些数据的散点图;
(2)求这些数据的线性回归方程;
(3)预测当广告费支出为9百万元时的销售额.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好.国家环境标准设定的PM2.5日均值(微克/立方米)与空气质量等级对应关系如表:

PM2.5日均值
(微克/立方米)

0﹣﹣35

35﹣﹣75

75﹣﹣115

115﹣﹣150

150﹣﹣250

250以上

空气质量等级

1级

2级

3级
轻度污染

4级
中度污染

5级
重度污染

6级
严重污染

由某市城市环境监测网获得4月份某5天甲、乙两城市的空气质量指数数据,用茎叶图表示,如图所示.

(1)试根据统计数据,分别写出两城区的PM2.5日均值的中位数,并从中位数角度判断哪个城区的空气质量较好?
(2)考虑用频率估计概率的方法,试根据统计数据,估计甲城区某一天空气质量等级为3
(3)分别从甲、乙两个城区的统计数据中任取一个,试求这两城区空气质量等级相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求证:a>0,且﹣2< <﹣1;
(Ⅱ)求证:函数y=f(x)在区间(0,1)内有两个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把边长为2的正方形ABCD沿对角线BD折起并连接AC形成三棱锥C﹣ABD,其正视图、俯视图均为等腰直角三角形(如图所示),则三棱锥C﹣ABD的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足 = +
(1)求证:A、B、C三点共线;
(2)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤ ),f(x)= ﹣(2m+ )| |的最小值为﹣ ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】| |=1,| |= =0,点C在∠AOB内,且∠AOC=30°,设 =m +n (m、n∈R),则 等于( )
A.
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,过椭圆 右焦点 的直线交椭圆两点 , 的中点,且 的斜率为 .

(1)求椭圆的标准方程;

(2)设过点 的直线 (不与坐标轴垂直)与椭圆交于 两点,问:在 轴上是否存在定点 ,使得 为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案