精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

【答案】(1) ;(2)证明见解析;(3) .

【解析】试题分析:

1是奇函数可得,从而,整理得,比较系数得,验证得不合题意,故。(2)设,做差比较可得,故,即,证得结论成立。(3)分离参数得上恒成立,设,根据单调性求得,从而可得结论。

试题解析:

(1)∵函数是奇函数,

整理得

解得

时, ,不合题意舍去,

(2)由(1)可得

,

,

,

,即.

上的增函数.

(3)依题意得上恒成立,

由(2)知函数上单调递增,

∴当

所以.

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:

(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,且与轴有唯一的交点.

(1)求的表达式;

(2)设函数,若上是单调函数,求实数的取值范围;

(3)设函数,记此函数的最小值为,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A、B、C所对的边分别为a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 底面为等边三角形, 的中点.

(1)求证:直线平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a﹣2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出: y=
求从上午6点到中午12点,通过该路段用时最多的时刻.

查看答案和解析>>

同步练习册答案