精英家教网 > 高中数学 > 题目详情

已知曲线相交于点A,

(1)求A点坐标;

(2)分别求它们在A点处的切线方程(写成直线的一般式方程);

(3)求由曲线在A点处的切线及以及轴所围成的图形面积。(画出草图)

【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。

 

【答案】

(1) 曲线在它们的交点坐标是(1,1),    ( 4 分 ) 

(2) 两条切线方程分别是x+y-2=0和2x-y-1=0,      ( 4 分 )

   (3) 图形面积是

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点B(5,0)和点C(-5,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2:
(Ⅰ)如果k1•k2=
1625
,求点A的轨迹方程;
(Ⅱ)如果k1•k2=a,其中a≠0,求点A的轨迹方程,并根据a的取值讨论此轨迹是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B(6,0)和点C(-6,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2
(1)如果k1•k2=-
4
9
,求点A的轨迹方程,并写出此轨迹曲线的焦点坐标;
(2)如果k1•k2=
4
9
,求点A的轨迹方程,并写出此轨迹曲线的离心率;
(3)如果k1•k2=k(k≠0,k≠-1),根据(1)和(2),你能得到什么结论?(不需要证明所得结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点P的极坐标为(
2
π
4
),直线l过点P,且倾斜角为
3
,方程
x2
36
+
y2
16
=1所对应的曲线经过伸缩变换
x′=
1
3
x
y′=
1
2
y
后的图形为曲线C.
(Ⅰ)求直线l的参数方程和曲线C的直角坐标系方程.
(Ⅱ)直线l与曲线C相交于两点A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源:2013届吉林省高二下学期期初考试理科数学试卷(解析版) 题型:解答题

已知曲线相交于点A,

(1)求A点坐标;

(2)分别求它们在A点处的切线方程(写成直线的一般式方程);

(3)求由曲线在A点处的切线及以及轴所围成的图形面积。(画出草图)

【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。

 

查看答案和解析>>

同步练习册答案