精英家教网 > 高中数学 > 题目详情
10.已知等差数列{an}的前n项和为Sn,且3a3=a6+4,则“a2<1”是“S5<10”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据等差数列的性质结合充分条件和必要条件的定义进行判断即可.

解答 解:设公差为d,由3a3=a6+4得3a2+3d=a2+4d+4,即d=2a2-4,
则由S5<10得$\frac{{5({{a_1}+{a_5}})}}{2}$=$\frac{{5({{a_2}+{a_4}})}}{2}=\frac{{5({6{a_2}-8})}}{2}<10$,即有a2<2.
则“a2<1”是“S5<10”的充分不必要条件,
选A.

点评 本题主要考查充分条件和必要条件的判断,结合等差数列的通项公式以及前n项和公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设4a=5b=m,且$\frac{1}{a}$+$\frac{2}{b}$=1.
(1)求a,b的值(用m表示);
(2)求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|y=$\sqrt{\frac{6}{x+1}-1}$,集合B={x|y=lg(-x2+2x+3)}.求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中心在坐标原点,对称轴为坐标轴的双曲线C过点$P(3,\sqrt{5})$,离心率为$\sqrt{2}$.
(1)求双曲线C的方程;
(2)过C的左顶点A引C的一条渐近线的平行线l,求直线l与另一条渐近线及x轴围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题P::直线mx-y+2=0与圆x2+y2-2x-4y+$\frac{19}{4}$=0有两个交点;命题:$q:?{x_0}∈[{-\frac{π}{6},\frac{π}{4}}],2sin({2{x_0}+\frac{π}{6}})+2cos2{x_0}$≤m.
(1)若p∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在[-1,1]上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),当x=-$\frac{π}{4}$时函数f(x)能取得最小值,当x=$\frac{π}{4}$时函数y=f(x)能取得最大值,且f(x)在区间($\frac{π}{18}$,$\frac{5π}{36}$)上单调.则当ω取最大值时φ的值为-$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给定有穷单调递增数列{xn}(n∈N*),数列{xn}至少有两项,且xi≠0(1≤i≤n),定义集合A={(x,y)|1≤i,j≤n,且i,j∈N*}.若对任意点A1∈A,存在A2∈A使得OA1⊥OA2(O为坐标原点),则称数列{xn}具有性质P.
(1)给出下列四个命题,其中正确是①③④(填上所有正确命题的序号)
①数列{xn}:-2,2具有性质P;
②数列{xn}:-2,-1,1,2具有性质P;
③数列{xn}具有性质P,则{xn}中一定存在两项xi,xj,使得xi+xj=0;
④数列{xn}具有性质P,x1=-1,x2>0,且xn>1(n≥3),则x2=1.
(2)若数列{xn}只有2015项且具有性质P,x1=-1,x3=2,则{xn}的所有S2015=22016-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={x|-5<x<5},集合B={x|-7<x<a},集合C={b<x<2},且A∩B=C则实数a+b=-3.

查看答案和解析>>

同步练习册答案