精英家教网 > 高中数学 > 题目详情
已知函数,其中a∈R.
(Ⅰ)若函数f(x)为奇函数,求实数a的值;
(Ⅱ)若函数f(x)在区间[2,+∞)上单调递增,求实数a的取值范围.
【答案】分析:(Ⅰ)由题意可得f(-x)=-f(x),即,由此求得a的值.
(Ⅱ)根据f(x)在区间[2,+∞)上单调递增,可得在[2,+∞)上恒成立,即在[2,+∞)上恒成立,求得在[2,+∞)上的最
小值ymin=4,可得a≤4,验证知当a≤4满足条件.
解答:解:(Ⅰ)解:因为是奇函数. 所以f(-x)=-f(x),其中x∈R且x≠0.…(2分)
,其中x∈R且x≠0.
所以a=0.…(6分)
(Ⅱ)解:.…(8分)
因为f(x)在区间[2,+∞)上单调递增,
所以 在[2,+∞)上恒成立,…(9分)
在[2,+∞)上恒成立,
因为在[2,+∞)上的最小值ymin=4,
所以 a≤4,验证知当a≤4时,f(x)在区间[2,+∞)上单调递增.…(13分)
点评:本题主要考查函数的奇偶性、单调性的应用,函数的恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省济宁市汶上一中高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a∈R.
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)在区间[2,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河南省郑州47中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在原点处的切线方程;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市东城区高三(上)12月联考数学试卷(理科)(解析版) 题型:解答题

(理)已知函数,其中a∈R.
(Ⅰ)若x=2是f(x)的极值点,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年北京市西城区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数,其中a∈R.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[2,3]上的最大值和最小值.

查看答案和解析>>

同步练习册答案