精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解关于的不等式

(2)若对任意,都存在,使得不等式成立,求实数的取值范围.

【答案】(1) .

(2) .

【解析】分析:第一问首先将代入然后根据零点分段将绝对值符号去掉,再去解对应的各段上的不等式,从而求得的范围,最后求并集得到结果;第二问根据所给的量词,将恒成立问题转化为相应的最值问题,结合三角不等式,分类讨论,求得结果.

详解:(1)当时,,则

时,由得,,解得

时,恒成立;

时,由得,,解得

所以的解集为

(2)因为对任意,都存在,使得不等式成立,

所以

因为,所以

,…①

时,①式等号成立,即

又因为,…②

时,②式等号成立,即

所以,整理得,

解得,即的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)当时,讨论的单调性;

(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点的直线(倾斜角为锐角)交抛物线于两点,若为线段的中点,连接并延长交抛物线于点,已知,则直线的斜率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若关于的方程恰好有个不相等的实数解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为;现记该选手在回答完个问题后的总得分为

1)求)的概率;

2)记,求的分布列,并计算数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某小区居民的“幸福度”。现从所有居民中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶),若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”。

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;

(2)以这16人的样本数据来估计整个小区的总体数据,若从该小区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望和方差。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理过程是演绎推理的是(  )

A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50

B. 由三角形的性质,推测空间四面体的性质

C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分

D. 在数列中,,可得,由此归纳出的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是(  )

A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是(  )

①各棱长相等,同一顶点上的任两条棱的夹角都相等;

②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;

③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.

A. B. C. ①②③D.

查看答案和解析>>

同步练习册答案