精英家教网 > 高中数学 > 题目详情
5.下列函数与函数y=x相等的是(  )
A.$y={({\sqrt{x}})^2}$B.$y=\sqrt{x^2}$C.$y={({\root{3}{x}})^3}$D.$y=\frac{x^2}{x}$

分析 已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和已知函数一致即可.

解答 解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.
B.函数的定义域为R,y=|x|,对应关系不一致.
C.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.
D.函数的定义域为{x|x≠0},两个函数的定义域不同.
故选C.

点评 本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l过坐标原点O,圆C的方程为x2+y2-6y+4=0.
(Ⅰ)当直线l的斜率为$\sqrt{2}$时,求l与圆C相交所得的弦长;
(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$-2$\overrightarrow{b}$的模等于$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知θ∈(π,2π),$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(cosθ,sinθ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则cosθ的值为(  )
A.$\frac{\sqrt{5}}{5}$B.±$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\vec a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,$|{\overrightarrow a}|=2$,|$\overrightarrow{b}$|=3,记$\vec m=3\vec a-2\vec b$,$\vec n=2\vec a+k\vec b$
(I) 若$\vec m⊥\vec n$,求实数k的值;
(II) 当$k=-\frac{4}{3}$时,求向量$\vec m$与$\vec n$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.经过点$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$的圆x2+y2=1的切线方程是(  )
A.$x+\sqrt{3}y=2$B.$\sqrt{3}x+y=2$C.$x+\sqrt{3}y=1$D.$\sqrt{3}x+y=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=$\sqrt{3}$,BC=PA=1,E为PD的中点,点N在面PAC内,且NE⊥平面PAC,则点N到AB的距离为$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线2x-y-4=0与抛物线y2=6x交于A、B两点,则线段AB的长度为(  )
A.$\frac{{\sqrt{265}}}{2}$B.$\frac{{\sqrt{285}}}{2}$C.$\frac{{\sqrt{305}}}{2}$D.$\frac{{\sqrt{335}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)的定义域为D,若x1,x2∈D且当f(x1)=f(x2)时总有x1=x2,则称f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数,给出下列命题:
①反比例函数$f(x)=\frac{1}{x}$(x∈R,x≠0)是单值函数;
②二次函数f(x)=x2(x∈R)是单值函数;
③在定义域D上单调递增或递减的函数一定是单值函数.
以上命题中的真命题有①③(写出所有真命题的编号).

查看答案和解析>>

同步练习册答案