精英家教网 > 高中数学 > 题目详情

【题目】已知

)若函数上单调递增,求实数的取值范围;

)若,证明:恒成立.

【答案】见解析

【解析】(

由函数上单调递增,可得上恒成立,

,得 -----------------2分

),

时,,函数单调递减;当时,,函数单调递增.

所以 -----------------5分

所以实数的取值范围为 ---------------------------6分

)设

故当时,,函数单调递减;

时,,函数单调递增. ------------9分

,所以,使得,即

所以当时,,函数单调递增;

时,,函数单调递减;

时,,函数单调递增.

所以时,,即恒成立. -----------------13分

【命题意图】本题考查导数与函数的单调性、不等式的证明等,考查基本的逻辑推理能力、运算能力以及数学应用意识等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.

(Ⅰ)讨论g(x)的单调性;

(Ⅱ)当a>0时,若f(x)有两个零点x1,x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0,使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数)的对称中心到对称轴距离的最小值为.

(Ⅰ)求

(Ⅱ)中,角的对边分别为.已知锐角为函数的一个零点,且的面积,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角三角形的内角的对边分别为

(Ⅰ)求的大小;

(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I) 讨论函数的单调区间;

(II)当时,若函数在区间上的最大值为3,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)试判断f (x)的单调性,并证明你的结论;
(2)若f (x)为定义域上的奇函数,求函数f (x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为三角形的三边,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品x(百台),总成本为C(x)(万元),其中固定成本为2万元,每生产1百台,成本增加1万元,销售收入 (万元),假定该产品产销平衡.
(1)若要该厂不亏本,产量x应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,第一年投入资金1000万元,出售产品收入40万元,预计以后每年的投入资金是上一年的一半,出售产品所得收入比上一年多80万元,同时,当预计投入的资金低于20万元时,就按20万元投入,且当年出售产品收入与上一年相等.

(1)求第年的预计投入资金与出售产品的收入;

(2)预计从哪一年起该公司开始盈利?(注:盈利是指总收入大于总投入)

查看答案和解析>>

同步练习册答案